您好,欢迎光临有路网!
无线与移动通信中的信号处理技术第1册:信道估计与均衡(英文版)
QQ咨询:
有路璐璐:

无线与移动通信中的信号处理技术第1册:信道估计与均衡(英文版)

  • 作者:[美]贾纳科斯
  • 出版社:人民邮电出版社
  • ISBN:9787115108289
  • 出版日期:2002年11月01日
  • 页数:434
  • 定价:¥29.00
  • 分享领佣金
    手机购买
    城市
    店铺名称
    店主联系方式
    店铺售价
    库存
    店铺得分/总交易量
    发布时间
    操作

    新书比价

    网站名称
    书名
    售价
    优惠
    操作

    图书详情

    内容提要
    《无线与移动通信中的信号处理新技术》丛书,介绍了近年来无线与移动通信中使用的信号处理(SP)工具的*新的重要进展,以及世界范围内该领域的领先者的贡献。本书是两本书中的第1册。本丛书的内容涵盖了范围广泛的技术和方法论,包括噪声与于扰消除、调制解调器设计、移动互联网业务、下一代音频/视频广播、蜂窝移动电话和无线多媒体网络等。
    本书(第1册)**阐述单用户点对点链路的信道识别与均衡的关键技术。由于信息承载信号的在衰落介质中传播的,所以现代的均衡器必须充分考虑移动无线信道的可变性,减小符号间于扰和同(共)信道于扰,并**在单个或多个传感器的接收机中的噪声。本书介绍了*近提出的带宽节省(半)盲算法与性能分析,以及线性预编码技术,这些技术利用发射冗余使基于训练序列的系统获得明显的改善。本书内容包括:
    * 盲识别与反卷积的子空间方法
    * 有色信号驱动的信道的盲识别与均衡
    * *优子空间方法;多信道均衡的线性预测算法
    * FIR多信道估计的半盲方法
    * 盲判决反馈均衡等
    本书还介绍了在世界范围内各种期刊中的研究成果,全面汇集了用于优化单用户点点链路的先进信号处理技术。本书对于通信工程师、研究人员、
    目录
    PREFACE xi
    1 CHANNEL ESTIMATION AND EQUALIZATION USING HIGHER-ORDER STATISTICS 1
    1.1 Introduction 1
    1.2 Single-User Systems :Baud Rate Sampling 4
    1.2.1 Cumulant Matching 4
    1.2.2 Inverse Filter Criteria 8
    1.2.3 Equation Error Formulations 8
    1.2.4 Simulation Examples 8
    1.3 Single-user Systems :Fractional Sampling 12
    1.3.1 Cumulant Matching 13
    1.3.2 Simulation Example 20
    1.4 Multi-user Systems 24
    1.4.1 Inverse Filter Criteria 26
    1.4.2 Cumulant Matching 28
    1.4.3 Simulation Examples 31
    1.5 Concluding Remarks 35
    Bibliography 37

    2 PERFORMANCE BOUNDS FOR BLIND CHANNEL ESTIMATION 41
    2.1 Introduction 42
    2.2 Problem Statement and Preliminaries 42
    2.2.1 The Blind Channel Identification Problem 42
    2.2.2 Ambiguity Elimination 44
    2.2.3 The Unconstrained FIM 46
    2.2.4 Achievability of the CRB 47
    2.3 CRB for Constrained Estimates 48
    2.4 CRB for Estimates of Invariants 49
    2.5 CRB for Projection Errors 52
    2.6 Numerical Examples 53
    2.7 Concluding Remarks 58
    Appendix 2.A Proof of Proposition 2 59
    Bibliography 61

    3 SUBSPACE METHOD FOR BLIND IDENTIFICATION AND DECONVOLUTION 63

    3.1 Introduction 63
    3.2 Subspace Identification of SIMO Channels 65
    3.2.1 Practical Considerations 69
    3.2.2 Simplifications in the Two-Channel Case 70
    3.3 Subspace Identification of MIMO Channels 71
    3.3.1 Rational Spaces and Polynomial Bases 72
    3.3.2 The Structure of the Left Nullspace of a Sylvester Matrix 76
    3.3.3 The Subspace Method 78
    3.3.4 Advanced Results 82
    3.4 Applications to the Blind Channel Estimation of CDMA Systems 84
    3.4.1 Model Structure 84
    3.4.2 The Structured Subspace Method: The Uplink Case 88
    3.4.3 The Structured Subspace Method: The Downlink Case 89
    3.5 Undermodeled Channel Identification 92
    3.5.1 Example: Identifying a Significant Part of a Channel 99
    3.5.2 Determining the Effective Impulse Response Length 100
    Appendix 3.A 102
    3.A.1 Proof of Theorem 1 103
    3.A.2 Proof of Proposition 3 104
    3.A.3 Proof of Theorem 4 105
    3.A.4 Proof of Proposition 5 106
    Bibliography 108

    4 BLIND IDENTIFICATION AND EQUALIZATION OF CHANNELS DRIVEN BY COLORED SIGNALS 113
    4.1 Introduction 114
    4.2 FIR MIMO Channel 115
    4.2.1 Original Model 115
    4.2.2 Slide-Window Formulation 115
    4.2.3 Noise Variance and Number of Input Signals 116
    4.3 Identifiability Using SOS 117
    4.3.1 Identifiability Conditions 117
    4.3.2 Some Facts of Polynomial Matrices 118
    4.3.3 Proof of the Conditions 120
    4.3.4 When the Input is White 121
    4.4 Blind Identification via Decorrelation 121
    4.4.1 The Principle of the BID 121
    4.4.2 Constructing the Decorrelators 126
    4.4.3 Removing the GCD of Polynomials 128
    4.4.4 Identification of the SIMO Channels 130
    4.5 Final Remarks 135
    Bibliography 135

    5 OPTIMUM SUBSPACE METHODS 139
    5.1 Introduction 139
    5.2 Data Model and Notations 140
    5.2.1 Scalar Valued Communication Systems 140
    5.2.2 Multi Channel Communication Systems 141
    5.2.3 A Stacked System Model 143
    5.2.4 Correlation Matrices 145
    5.2.5 Statistical Assumptions 147
    5.3 Subspace Ideas and Notations 148
    5.3.1 Basic Notations 149
    5.4 Parameterizations 151
    5.4.1 A Noise Subspace Parameterization 151
    5.4.2 Selection Matrices 153
    5.5 Estimation Procedure 154
    5.5.1 The Signal Subspace Parameterization 155
    5.5.2 The Noise Subspace Parameterization 156
    5.6 Statistical Analysis 156
    5.6.1 The Residual Covariance Matrices 157
    5.6.2 The Parameter Covariance Matrices 159
    5.7 Relation to Direction Estimation 161
    5.8 Further Results for the Noise Subspace Parameterization 162
    5.8.1 The Results 163
    5.8.2 The Approach 163
    5.9 Simulation Examples 164
    5.10 Conclusions 171
    Appendix 5.A 173
    Bibliography 174

    6 LINEAR PREDICTIVE ALGORITHMS FOR BLIND MULTICHANNEL IDENTIFICATION 179
    6.1 Introduction 179
    6.2 Channel Identification Based on Second Order Statistics: Problem Formulation 181
    6.3 Linear Prediction Algorithm for Channel Identification 183
    6.4 Outer-Product Decomposition Algorithm 185
    6.5 Multi-step Linear Prediction 188
    6.6 Channel Estimation by Linear Smoothing (Not Predicting) 189
    6.7 Channel Estimation by Constrained Output Energy Minimization 192
    6.8 Discussion 195
    6.8.1 Channel Conditions 195
    6.8.2 Data Conditions 196
    6.8.3 Noise Effect 196
    6.9 Simulation Results 197
    6.10 Summary 198
    Bibliography 207

    7 SEMI-BLIND METHODS FOR FIR MULTICHANNEL ESTIMATION 211
    7.1 Introduction 212
    7.1.1 Training Sequence Based Methods and Blind Methods 212
    7.1.2 Semi-Blind Principle 213
    7.2 Problem Formulation 214
    7.3 Classification lf Semi-Blind Methods 217
    7.4 Identifiability Conditions for Semi-Blind Channel Estimation 218
    7.4.1 Identifiability Definition 218
    7.4.2 TS Based Channel Identifiability 219
    7.4.3 Identifiability in the Deterministic Model 219
    7.4.4 Identifiability in the Gaussian Model 222
    7.5 Performance Measure: Cramer-Rao Bounds 224
    7.6 Performance Optimization Issues 226
    7.7 Optimal Semi-Blind Methods 227
    7.8 Blind DML 229
    7.8.1 Denoised IQML (DIQML) 230
    7.8.2 Pseudo Quadratic ML (PQML) 231
    7.9 Three Suboptimal DML Based Semi-Blind Criteria 232
    7.9.1 Split of the Data 232
    7.9.2 Least Squares-DML 232
    7.9.3 Alternating Quadratic DML (AQ-DML) 233
    7.9.4 Weighted-Least-Squares-PQML (WLS-PQML) 235
    7.9.5 Wimulations 236
    7.10 Semi-Blind Criteria as a Combination of a Blind and a TS Based Criteria 236
    7.10.1 Semi-Blind SRM Example 237
    7.10.2 Subspace Fitting Example 239
    7.11 Performance of Semi-Blind Quadratic Criteria 242
    7.11.1 MU and MK infinite 243
    7.11.2 MU infinite, MK finite 243
    7.11.3 Optimally Weighted Quadratic Criteria 247
    7.12 Gaussian Methods 247
    7.13 Conclusion 249
    Bibliography 250

    8 A GEOMETRICAL APPROACH TO BLIND SIGNAL ESTIMATION 255
    8.1 Introduction 256
    8.2 Design Criteria for Blind Estimators 258
    8.2.1 The Constant Modulus Receiver 260
    8.2.2 The Shalvi-Weinstein Receiver 261
    8.3 The Signal Space Property and Equivalent Cost Functions 263
    8.3.1 The Signal Space Property of CM Receivers 263
    8.3.2 The Signal Space Property of SW Receivers 264
    8.3.3 Equivalent Cost Functions 265
    8.4 Geometrical Analysis of SW Receivers: Global Characterization 266
    8.4.1 The Noiseless Case 268
    8.4.2 The Noisy Case 270
    8.4.3 Domains of Attraction of SW Receivers 275
    8.5 Geometrical Analysis of SW Receivers: Local Characterizations 277
    8.5.1 Local Characterization 277
    8.5.2 MSE of CM Receivers 281
    8.6 Conclusion and Bibliography Notes 282
    8.6.1 Bibliography Notes 283
    Appendix 8.A Proof of Theorem 5 285
    Bibliography 288

    9 LINEAR PRECODING FOR ESTIMATION AND EQUALIZATION OF FREQUENCY-SELECTIVE CHANNELS 291
    9.1 System Model 293
    9.2 Unifying Filterbank Precoders 296
    9.3 FIR-ZF Equalizers 301
    9.4 Jointly Optimal Precoder and Decoder Design 306
    9.4.1 Zero-order Model 306
    9.4.2 MMSE/ZF Coding 308
    9.4.3 MMSE Solution wit Constrained Average Power 309
    9.4.4 Constrained Power Maximum Information Rate Design 311
    9.4.5 Comparison Between Optimal Designs 313
    9.4.6 Asymptotic Performance 317
    9.4.7 Numerical Examples 318
    9.5 Blind Symbol Recovery 320
    9.5.1 Blind Channel Estimation 322
    9.5.2 Comparison with Other Blind Techniques 324
    9.5.3 Statistical Efficiency 330
    9.6 Conclusion 332
    Bibliography 332

    10. BLIND CHANNEL IDENTIFIABILITY WITH AN ARBITRARY LINEAR PRECODR 339
    10.1 Introduction 339
    10.2 Basic Theory of Polynomial Equations 344
    10.2.1 Definition of Generic 344
    10.2.2 General Properties of Polynomial Maps 344
    10.2.3 Generic and Non-Generic Points 346
    10.2.4 Invertibility Criteria 347
    10.3 Inherent Scale Ambiguity 348
    10.4 Weak Identifiability and the CRB 348
    10.5 Arbitrary Linear Precoders 349
    10.6 Zero Prefix Precoders 351
    10.7 Geometric Interpretation of Precoding 354
    10.7.1 Linear Precoders 354
    10.7.2 Zero Prefix Precoders 355
    10.8 Filter Banks 355
    10.8.1 Algebraic Analysis of Filter Banks 357
    10.8.2 Spectral Analysis of Filter Banks 358
    10.9 Ambiguity Resistant Precoders 360
    10.10 Symbolic Methods 361
    10.11 Conclusion 362
    Bibliography 363

    11 CURRENT APPROACHES TO BLIND DECISION FEEDBACK EQUALIZATION 367
    11.1 Introduction 367
    11.2 Notation 370
    11.3 Data Model 373
    11.4 Wiener Filtering 374
    11.4.1 Unconstrained Length MMSE Receivers 375
    11.4.2 Constrained Length MMSE Receivers 377
    11.4.3 Example: Constrained Versus Unconstrained Length Wiener Receivers 379
    11.5 Blind Tracking Algorithms 380
    11.5.1 DD-DFE 381
    11.5.2 CMA-DFE 388
    11.5.3 Algorithmic and Structural Modifications 389
    11.5.4 Summary of Blind Tracking Algorithms 391
    11.6 DFE Initialization Strategies 391
    11.6.1 Generic Strategy 391
    11.6.2 Multistage Equalization 395
    11.6.3 CMA-IIR Initialization 397
    11.6.4 Local Stability of Adaptive IIR Equalizers 398
    11.6.5 Summary of Blind Initialization Strategies 399
    11.7 Conclusion 400
    Appendix 11.A Spectral Factorization 402
    Appendix 11.B CL-MMSE-DFE 403
    Appendix 11.C DD-DFE Local Convergence 405
    Appendix 11.D Adaptive IIR Algorithm Updates 406
    Appendix 11.E CMA-AR Local Stability 409
    Bibliography 411

    与描述相符

    100

    北京 天津 河北 山西 内蒙古 辽宁 吉林 黑龙江 上海 江苏 浙江 安徽 福建 江西 山东 河南 湖北 湖南 广东 广西 海南 重庆 四川 贵州 云南 西藏 陕西 甘肃 青海 宁夏 新疆 台湾 香港 澳门 海外