您好,欢迎光临有路网!
几何物理学导论(英文版)
QQ咨询:

几何物理学导论(英文版)

  • 作者:R.Aldrovandi J.G.Pereira
  • 出版社:世界图书出版社
  • ISBN:9787506247177
  • 出版日期:2000年06月01日
  • 页数:699
  • 定价:¥80.00
  • 砍价广告长条形
    城市
    店铺名称
    店主联系方式
    店铺售价
    库存
    店铺得分/总交易量
    发布时间
    操作

    新书比价

    网站名称
    书名
    售价
    优惠
    操作

    图书详情

    内容提要
    This book grew out of courses given at the Instituto de Fisica Teorica for many years. As the title announces, it is intended as a first, elementary approach to "Geometrical Physics" -- to be understood as a chapter of Mathematical Physics. Mathematical Physics is a moving subject, and has moved faster in recent times. From the study of differential equations and related special functions, it has migrated to the more qualitative realms of topology and algebra. The bridge has been the framework o
    目录
    0SPACE AND GEOMETRY
    PARTⅠMANIFOLDS
    1 GENERAL TOPOLOGY
    1.0 INTRODUCTORY COMMENTS
    1.1 TOPOLOGICAL SPACES
    1.2 KINDS OF TEXTURE
    1.3 FUNCTIONS
    1.4 QUOTIENTS AND GROUPS
    1.4.a Quotient spaces
    1.4.b Topological groups
    2 HOMOLOGY
    2.1 GRAPHS
    2.1.a Graphs, first way
    2.1.b Graphs, second way
    2.2 THE FIRST TOPOLOGICAL INVARIANTS
    2.2.a Simplexes, complexes & all that
    2.2.b Topological numbers
    3 HOMOTOPY
    3.0 GENERAL HOMOTOPY
    3.1 PATH HOMOTOPY
    3.1.a Homotopy of curves
    3.1.b The Fundamental group
    3.1.c Some calculations
    3.2 COVERING SPACES
    3.2.a Multiply-connected Spaces
    3.2.b Coveting Spaces
    3.3 HIGHER HOMOTOPY
    4 MANIFOLDS & CHARTS
    4.1 MANIFOLDS
    4.1.a Topological manifolds
    4.1.b Dimensions, integer and other
    4.2 CHARTS AND COORDINATES
    5 DIFFERENTIABLE MANIFOLDS
    5.1 DEFINITION AND OVERLOOK
    5.2 SMOOTH FUNCTIONS
    5.3 DIFFERENTIABLE SUBMANIFOLDS
    PARTⅡDIFFERENTIABLE STRUCTURE
    6 TANGENT STRUCTURE
    6.1 INTRODUCTION
    6.2 TANGENT SPACES
    6.3 TENSORS ON MANIFOLDS
    6.4 FIELDS & TRANSFORMATIONS
    6.4.a Fields
    6.4.b Transformations
    6.5 FRAMES
    6.6 METRIC & RIEMANNIAN MANIFOLDS
    7 DIFFERENTIAL FORMS
    7.1 INTRODUCTION
    7.2 EXTERIOR DERIVATIVE
    7.3 VECTOR-VALUED FORMS
    7.4 DUALITY AND CODERIVATION
    7.5 INTEGRATION AND HOMOLOGY
    7.5.a Integration
    7.5.b Cohomology of differential forms
    7.6 ALGEBRAS, ENDOMORPHISMS AND DERIVATIVES
    8 SYMMETRIES
    8.1 LIE GROUPS
    8.2 TRANSFORMATIONS ON MANIFOLDS
    8.3 LIE ALGEBRA OF A LIE GROUP
    8.4 THE ADJOINT REPRESENTATION
    9 FIBER BUNDLES
    9.1 INTRODUCTION
    9.2 VECTOR BUNDLES
    9.3 THE BUNDLE OF LINEAR FRAMES
    9.4 LINEAR CONNECTIONS
    9.5 PRINCIPAL BUNDLES
    9.6 GENERAL CONNECTIONS
    9.7 BUNDLE CLASSIFICATION
    PARTⅢFINAL TOUCH
    10 NONCOMMUTATIVE GEOMETRY
    10.1 QUANTUM GROUPS -- A PEDESTRIAN OUTLINE
    10.2 QUANTUM GEOMETRY
    PARTⅣ MATHEMATICAL TOPICS
    PARTⅤPHYSICAL TOPICS
    GLOSSARY
    REFERENCES
    ALPHABETIC INDEX
    北京 天津 河北 山西 内蒙古 辽宁 吉林 黑龙江 上海 江苏 浙江 安徽 福建 江西 山东 河南 湖北 湖南 广东 广西 海南 重庆 四川 贵州 云南 西藏 陕西 甘肃 青海 宁夏 新疆 台湾 香港 澳门 海外