您好,欢迎光临有路网!
微积分(第2版)(上册)
QQ咨询:

微积分(第2版)(上册)

  • 作者:同济大学应用数学系
  • 出版社:高等教育出版社
  • ISBN:9787040121780
  • 出版日期:2003年08月01日
  • 页数:362
  • 定价:¥24.90
  • 分享
    城市
    店铺名称
    店主联系方式
    店铺售价
    库存
    店铺得分/总交易量
    发布时间
    操作

    新书比价

    网站名称
    书名
    售价
    优惠
    操作

    图书详情

    内容提要
    本书是普通高等教育”十五”***规划教材,在同济大学应用数学系编《微积分》的基础上修订而成。这次修订的宗旨是在保持改革特色的前提下,使本书内容更加贴近当前的教学实际,便于教学。对部分章节的内容作了重新组合、增删和改写,参照当前通行的教学基本要求,适当调整了部分内容的要求;对习题,特别是每章的总习题做了较大的调整,充实了概念题和基本题,删去了少数技巧要求过高的题,突出了总习题的复习功能;数学实验是本书的特色之一,将部分实验与教学内容更加有机地结合起来,同时降低实验要求并删去了几个难度较大的实验,希望使用起来更加方便和有效。
    全书分上、下两册出版。上册内容为极限与连续、一元函数微分学、一元函数积分学和微分方程。下册内容为向量代数与空间解析几何、多元函数微分学、重积分、曲线积分与曲面积分和无穷级数。书末附有习题答案与提示。
    本书保持了**版结构严谨、逻辑清晰、叙述详尽、例题较多的特点。便于在教学改革中使用。本书可作为工科和其他非数学类专业的教材。
    目录
    第二版前言
    **版前言
    预备知识
    一、集合
    二、映射
    三、一元函数
    习题
    **章 极限与连续
    **节 微积分中的极限方法
    第二节 数列极限的定义
    习题1-2
    第三节 函数极限的定义
    一、函数在有限点处的极限
    二、函数在无穷大处的极限
    习题1-3
    第四节 极限的性质
    习题1-4
    第五节 极限的运算法则
    一、无穷小与无穷大
    二、极限的运算法则
    习题1-5
    第六节 极限存在准则与两个重要极限
    一、夹逼准则
    二、单调有界收敛准则
    习题1-6
    第七节 无穷小的比较
    一、无穷小的比较
    二、等价无穷小
    习题1-7
    第八节 函数的连续性与连续函数的运算
    一、函数的连续性
    二、函数的间断点
    三、连续函数的运算
    习题1-8
    第九节 闭区间上连续函数的性质
    一、*大值*小值定理
    二、零点定理与介值定理
    习题1-9
    总习题一
    第二章 一元函数微分学
    **节 导数的概念
    一、导数概念的引出
    二、导数的定义
    三、函数的可导性与连续性的关系
    习题2-1
    第二节 求导法则
    一、函数的线性组合、积、商的求导法则
    二、反函数的导数
    三、复合函数的导数
    习题2-2
    第三节 隐函数的导数和由参数方程确定的函数的导数
    一、隐函数的导数
    二、由参数方程确定的函数的导数
    三、相关变化率
    习题2-3
    第四节 高阶导数
    习题2-4
    第五节 函数的微分与函数的线性逼近
    一、微分的定义
    二、微分公式与运算法则
    三、微分的意义与应用
    习题2-5
    第六节 微分中值定理
    习题2-6
    第七节 泰勒公式
    习题2-7
    第八节 洛必达法则
    一、未定式
    二、未定式
    三、其他类型的未定式
    习题2-8
    第九节 函数单调性与凸性的判别方法
    一、函数单调性的判别法
    二、函数的凸性及其判别法
    习题2-9
    第十节 函数的极值与*大、*小值
    一、函数的极值及其求法
    二、*大值与*小值问题
    习题2-10
    第十一节 曲线的曲率
    一、平面曲线的曲率概念
    二、曲率公式
    习题2-11
    第十二节 一元函数微分学在经济中的应用
    总习题二
    第三章 一元函数积分学
    **节 不定积分的概念及其线性法则
    一、原函数和不定积分的概念
    二、基本积分表
    三、不定积分的线性运算法则
    习题3-1
    第二节 不定积分的换元积分法
    一、不定积分的**类换元法
    二、不定积分的第二类换元法
    习题3-2
    第三节 不定积分的分部积分法
    习题3-3
    第四节 有理函数的不定积分
    习题3-4
    第五节 定积分
    一、定积分问题举例
    二、定积分的定义
    三、定积分的性质
    习题3-5
    第六节 微积分基本定理
    一、积分上限的函数及其导数
    二、牛顿-莱布尼茨公式
    习题3-6
    第七节 定积分的换元法与分部积分法
    一、定积分的换元法
    二、定积分的分部积分法
    习题3-7
    第八节 定积分的几何应用举例
    一、平面图形的面积
    二、体积
    三、平面曲线的弧长
    习题3-8
    第九节 定积分的物理应用举例
    一、变力沿直线所作的功
    二、水压力
    三、引力
    习题3-9
    第十节 平均值
    一、函数的算术平均值
    二、函数的加权平均值
    三、函数的均方根平均值
    习题3-10
    第十一节 反常积分
    一、无穷限的反常积分
    二、无界函数的反常积分
    三、函数
    习题3-11
    总习题三
    第四章 微分方程
    **节 微分方程的基本概念
    习题4-1
    第二节 可分离变量的微分方程
    习题4-2
    第三节 一阶线性微分方程
    习题4-3
    第四节 可用变量代换法求解的一阶微分方程
    一、齐次型方程
    二、可化为齐次型的方程
    三、伯努利方程
    习题4-4
    第五节 可降阶的二阶微分方程
    一、y=f(x)型的微分方程
    二、y=f(x,y)型的微分方程
    三、y=f(y,y)型的微分方程(276)四、可降阶二阶微分方程的应用举例
    习题4-5
    第六节 线性微分方程解的结构
    习题4-6
    第七节 二阶常系数线性微分方程
    一、二阶常系数齐次线性微分方程
    二、二阶常系数非齐次线性微分方程
    三、二阶常系数线性微分方程的应用举例
    习题4-7
    第八节 高阶变系数线性微分方程解法举例
    一、解二阶变系数线性微分方程的常数变易法
    二、解欧拉方程的指数代换法
    习题4-8
    总习题四
    实验
    实验1 数列极限与生长模型
    实验2 飞机安全降落曲线的确定
    实验3 泰勒公式与函数逼近
    实验4 方程近似解的求法
    实验5 定积分的近似计算
    附录
    附录一 数学软件MATHEMATICA简介
    附录二 几种常用的曲线
    习题答案与提示
    记号说明
    北京 天津 河北 山西 内蒙古 辽宁 吉林 黑龙江 上海 江苏 浙江 安徽 福建 江西 山东 河南 湖北 湖南 广东 广西 海南 重庆 四川 贵州 云南 西藏 陕西 甘肃 青海 宁夏 新疆 台湾 香港 澳门 海外