您好,欢迎光临有路网!
材料力学(第3版)
QQ咨询:

材料力学(第3版)

  • 作者:Ferdinand P.Beer
  • 出版社:清华大学出版社
  • ISBN:9787894940209
  • 出版日期:2003年03月01日
  • 页数:788
  • 定价:¥74.00
  • 关注微信领礼券
    城市
    店铺名称
    店主联系方式
    店铺售价
    库存
    店铺得分/总交易量
    发布时间
    操作

    新书比价

    网站名称
    书名
    售价
    优惠
    操作

    图书详情

    内容提要
    本书是一本现代的材料力学教材,内容与我国材料力学的教学要求相近。概念清晰,内容新颖丰富,论述由浅入深、简明易懂,重视工程实际应用,习题丰富,是一本优秀的材料力学教材。可作为我国高等理工院校材料力学和工程力学课程的英文教材或主要参考书。
    目录
    Preface
    List of Sysmbols
    1 INTRODUCTION-CONCEPT OF STRESS
    1.1 Introduction
    1.2 A Short Review of the Methods of Statics
    1.3 Stresses in the Members of a Structure
    1.4 Analysis and Design
    1.5 Axial Loading;Normal Stress
    1.6 Shearing Stress
    1.7 Bearing Stress in Connections
    1.8 Application to the Analysis and Design of Simple Structures
    1.9 Method of Problem Solution
    1.10 Numerical Accuracy
    1.11 Stress on an Oblique Plane under Axial Loading
    1.12 Stress under General Loading Conditions Components of Stress
    1.13 Design Considrations
    Review and Summary for Chapter 1
    2 STRESS AND STRAIN-AXIAL LOADING
    2.1 Introductuion
    2.2 Normal Strain under Axial Loading
    2.3 Stress-Strain Diagram
    2.4 True Stress and True Strain
    2.5 Hooke's law;Modulus of Elasticity
    2.6 Elastic versus Plastic Behavior of a Material
    2.7 Repeated Loadings;Fatigue
    2.8 Deformations of Members under Axial Loading
    2.9 Statically Indeterminate Problems
    2.10 Problems Involving Temperature Changes
    2.11 Poisson's Ratio
    2.12 Multiaxial Loading;Generalized Hooke's Law
    2.13 Dilatation;Bulk Modulus
    2.14 Shearing Srain
    2.15 Further Discussion of Deformations under Axial Loading;Relation among E,v,and G
    2.16 Stress-Strain Relationships for Fiber-Reinforced Composite Materials
    2.17 Stress and Strain Distribution under Axial Loading Saint-Venant's Principle
    2.18 Stress Concentrations
    2.19 Plasic Deformations
    2.20 Residual Stresses
    Review and Summary for Chapter 2
    3 TORSION
    3.1 Introduction
    3.2 Preliminary Discussion of the Stresses in a Shaft
    3.3 Deformations in a Circular Shaft
    3.4 Stresses in the Elastic Range
    3.5 Angle of Twist in the Elastic Range
    3.6 Statically Indeterminate Shafts
    3.7 Design of Transmission Shafts
    3.8 Stress Concentrations in Circular Shafts
    3.9 Plastic Deformations in Circular Shafts
    3.10 Circular Shafts Made of an Elastoplastic Material
    3.11 Residual Stresses in Circular Shafts
    3.12 Torsion of Noncircular Members
    3.13 Thin-Walled Hollow Shafts
    Review and Summary for Chapter3
    4 PURE BENDING
    4.1 Introduction
    4.2 Symmetric Member in Pure Bending
    4.3 Deformations in a Symmetric Member in Pure Bending
    4.4 Stresses and Deformations in the Elastic Range
    4.5 Deformations in a Transverse Cross Section
    4.6 Bending of Members Made of Several Materials
    4.7 Stress Concentrations
    4.8 Plastic Deformations
    4.9 Members Made of and Elastoplastic Material
    4.10 Plastic Deformations of Members with a Single Plane of Symmetry
    4.11 Residual Stresses
    4.12 Eccentric Axial Loading in a Plane of Symmetry
    4.13 Unsymmetric Bending
    4.14 General Case of Eccentric Axial Loading
    4.15 Bending of Curved Members
    Review and Summary for Chapter4
    5 ANALYSIS AND DESIGN OF BEAMS FOR BENDING
    5.1 Introduction
    5.2 Shear and Bending-Moment Diagrams
    5.3 Relations among Load,Shear,and Bending Moment
    5.4 Design of Prismatic Beams for Bending
    5.5 Using Singularity Functions to Determine Shear and Bending Moment in a Beam
    5.6 Nonprismatic Beams
    Review and Summary for Chapter5
    6 SHEARING STRESSES IN BEAMS AND THIN-WALLED MEMBERS
    6.1 Introduction
    6.2 Shear on the Horizontal Face of a Beam Element
    6.3 Determination of the Shearing Stresses in a Beam
    6.4 Chearing Stresses in Common Types of Beams
    6.5 Further Discussion of the Distribution of Stresses in a Narrow Rectangular Beam
    6.6 Longitudinal Shear on a Beam Element of Arbitrary Shape
    6.7 Shearing Stresses in Thin-Walled Members
    6.8 Plastic Deformations
    6.9 Unsymmetric Loading of Thin-Walled Members Shear Center
    Review and Summary for Chapter6
    7 TRANSFORMATIONS OF STRESS AND STRAIN
    7.1 Introduction
    7.2 Transformation of Plane Stress
    7.3 Principal Stresses:Maximum Shearing Stress
    7.4 Mohr's State of Stress
    7.5 General State of Stress
    7.6 Applicatio of Mohr's Circle to the Three-Dimensional Analysis of Stress
    7.7 Yield Criteria for Ductile Materials under Plane Stress
    7.8 Fracture Criteria for Brittle Materials under Plane Stress
    7.9 Stresses in Thin-Walled Pressure Vessels
    7.10 Transformation of Plane Stress
    7.11 Mohr's Circle for Plane Strain
    7.12 Three-Dimensional Analysis of Strain
    7.13 Measurements of Strain;Strain Rosette
    Review and Summary for Chapter7
    8 PRINCIPAL STRESSES UNDER A GIVEN LOADING
    8.1 Introduction
    8.2 Principal Stresses in a Beam
    8.3 Design of Transmission Shafts
    8.4 Stresses under Combined Loadings
    Review and Summary for Chapter 8
    9 DEFLECTION OF BEAMS
    9.1 Introduction
    9.2 Deformation of Beam under Transverse Loading
    9.3 Equation of the Elastic Curve
    9.4 Direct Determination of the Elastic Curve from the Load Distribution
    9.5 Statically Indeterminate Beams
    9.6 Using Singularity Functions to Determine the Slope and Deflection of a Beam
    9.7 Method of Superposition
    9.8 Application of Superposition to Statically Indeterminate Beams
    9.9 Moment-Area Theorems
    9.10 Application to Cantilever Beams and Beams with Symmetric Loading
    9.11 Bending-Moment Diagrams by Parts
    9.12 Application of Moment-Area Theorems to Beams with Unsymmetric Loadings
    9.13 Maximum Deflection
    9.14 Use of Morment-Area Theorems with Statically Indeterminate Beams
    Review and Summary for Chapter9
    10 COLUMNS
    10.1 Introduction
    10.2 Stability of Structures
    10.3 Euler's Formula for Pin-Ended Columns
    10.4 Extension of Euler's Formula to Columens with Other End Conditions
    10.5 Eccentric Loading;the Secant Formula
    10.6 Design of Columns under a Centric Load
    10.7 Design of Columens under an Eccentric Load
    Review and Summary for Chapter 10
    11 ENERGY METHODS
    11.1 Introduction
    11.2 Strain Energy
    11.3 Strain-Energy Density
    11.4 Elastic Strain Energy for Normal Stresses
    11.5 Elastic Strain Energy for Shearing Stresses
    11.6 Strain Energy for a General State of Stress
    11.7 Impact Loading
    11.8 Design for Impact Loads
    11.9 Work and Energy under a Single Load
    11.10 Deflection under a Single Load by the Work-Energy Method
    11.11 Work and Energy under Several Loads
    11.12 Castigliano's Theorem
    11.13 Deflections by Castigliano's Theorem
    11.14 Statically Indeterminate Structures
    Review and Summary for Chapter 11
    APPENDICES
    A Moments of Areas
    B Typical Properties of Selected Materials Used in Engineering
    C Properties of Rolled-Steel Shapes
    D Beam Deflections and Slopes
    E Fundamentals of Engineering Examination
    Photo Credits
    Index
    Answers to Problems
    编辑推荐语
    本书由里海大学的F. P. Beer 教授与康奈狄克大学的 E. R. Johnston和J. T. Dewolf教授合著,1981年出版第1版,现为2001年的第3版。与铁摩辛柯和盖尔(S. P. Timoshenko & J. M. Gere)的经典材料力学教材(1930年出版第1版)相比,本书是一本较现代的教材,内容新颖,论述和编排上有自己的风格。前二位作者合著的《工程师的矢量力学――静力学与动力学》是美国采用得*多的“工程力学”**教材之一,本书继承了该书的特点和风格,因而也受到普遍欢迎。
    作为材料力学的初等教材,本书重视培养学生以简单而逻辑的方式去分析问题和应用若干基本原理去解决问题的能力。在理论部分讲授中由浅入深、循序渐进;首先强调对基本概念、基本原理和基本方法的正确理解和掌握,然后通过例题讲述工程应用和解题技巧。基于作者丰富的教学经验对教材内容和讲解顺序作了精心的安排。每章分为若干单元,每个单元相当于一堂课,先讲理论,再讲应用例题,然后有供学生复习用的思考题,*后给出大量习题,习题还按由易到难的顺序排列。每章末都有简短的评论和小结,给出供学生自我检查的测试题,*后还有适合用微机编程求解的作业(编号中都带字母C)。除了用斜体编号的习题外,在书末都附有答案。
    本书第1章是引言,简短地回顾静力学,引入应力概念,介绍解题和工程设计的基本概念和方法。第2、3、4章分别讨论轴向载荷、扭转和纯弯曲等三种载荷情况下的应力和截面变形分析,在新版第2章中增补了纤维增强复合材料的应力-应变关系。第5和第6章研究横向载荷作用下的梁,第5章讲剪力图、弯矩图和梁内的正应力,第6章讲横向载荷引起的剪应力,包括薄壁构件情况。第7和第8章论述应力和应变的转换,包括二维和三维的坐标转换公式,莫尔圆、主应力以及在梁、轴、薄壁压力容器等典型工程部件中的复合应力状态。第9章介绍梁的变形,即梁的挠度计算。第10章研究压杆的稳定性。第11章讲授能量方法,包括应变能和功的计算,功-能方法,卡氏定律等。
    本书附有基于Windows的交互式软件,结合动画讲述基本概念以及给出更多的例题和检测题。
    本书内容与我国材料力学的教学要求相近,概念清晰,论述由浅入深、简明易懂,重视工程实际应用,习题丰富,是一本优秀的材料力学教材,可作为我国高等理工院校材料力学和工程力学课程的英文教材或主要参考书。

    陆明万
    清华大学工程力学系
    北京 天津 河北 山西 内蒙古 辽宁 吉林 黑龙江 上海 江苏 浙江 安徽 福建 江西 山东 河南 湖北 湖南 广东 广西 海南 重庆 四川 贵州 云南 西藏 陕西 甘肃 青海 宁夏 新疆 台湾 香港 澳门 海外