本书结合分数微分学、Lyapunov稳定性理论和LMI理论等内容,按照不同耦合方式对系统进行分类,并分析了多重复杂性条件下的系统动力学性质和同步。其中,混沌映射分析包含对经典混沌映射和类分数阶混沌映射的动力学分析与控制。连续混沌系统研究包含了对Lorenz系统等经典混沌系统和复数域下扩展混沌系统的同步分析。基于分数微分系统和复数系统,通过规则耦合的方式,构造了分数阶时空耦合格子系统,并分析了系统在多重复杂性条件下的动力学行为。通过随机耦合的方式,进一步构造了多种具有实数状态的神经网络和具有逻辑状态的布尔网络模型,并给出了网络同步判据。