您好,欢迎光临有路网!
现代宇宙学(经典名著系列)(MODERN COSMOLOGY)
QQ咨询:
有路璐璐:

现代宇宙学(经典名著系列)(MODERN COSMOLOGY)

  • 作者:(英国)(Scott Dodelson)都德尔逊
  • 出版社:世界图书出版社
  • ISBN:9787506291996
  • 出版日期:2008年01月01日
  • 页数:440
  • 定价:¥55.00
  • 分享领佣金
    手机购买
    城市
    店铺名称
    店主联系方式
    店铺售价
    库存
    店铺得分/总交易量
    发布时间
    操作

    新书比价

    网站名称
    书名
    售价
    优惠
    操作

    图书详情

    内容提要
    现代观测技术正迅速革新我们对宇宙物理图像的认识。《现代宇宙学》系统地介绍了现代宇宙学的*新进展。从平坦均匀的宇宙(可以用弗里德曼—罗伯逊—沃克度规描述)开始,讲解了暗能量的处理过程,宇宙大爆炸的核合成,重组和暗物质,然后介绍了对平坦均匀宇宙的扰动:宇宙的演化和爱因斯坦—玻尔兹曼方程组,原始膨胀和现代宇宙的形成,以及观测结果如宇宙微波背景的各向异性,红移扭曲和弱透镜化现象等。《现代宇宙学》对宇宙微波背景的声学峰结构,以及用来探测原始引力波的偏振的E/B分解都有较详细的讨论,还包含了一个长的章节专门介绍对日益庞大的宇宙观测数据进行现代分析的技术。每章后都附有该章总结和相关文献。通过学习,读者可以获得从事现代宇宙学研究必须的知识和方法。
    《现代宇宙学》的特色:(1)讲解了现代宇宙学的理论基础,处理方法和具体解释,阐明了当前在宇宙学研究中的深刻思想;(2)涵盖了过去十年中在宇宙学研究中的重大进展;(3)包括了上百幅很有特色的教学图片。
    文章节选


    The Men of the Great Assembly had three sayings: "Be patient before reachinga decision; Enable many students to stand on their own; Make a fence around yourteaching."
    Ethics of the Fathers 1:1
    There are two aspects of cosmology today that make it more alluring than ever.First, there is an enormous amount of data. To give just one example of how rapidlyour knowledge of the structure of the universe is advancing, consider galaxy surveyswhich map the sky. In 1985, the state-of-the-art survey was the one carried out bythe Center for Astrophysics; it consisted of the positions of 1100 galaxies. Today, theSloan Digital Sky Survey and the Two Degree Field between them have recordedthe 3D positions of half a million galaxies.
    The other aspect of modern cosmology which distinguishes it from previousefforts to understand the universe is that we have developed a consistent theoret-ical framework which agrees quantitatively with the data. These two features arethe secret of the excitement in modern cosmology: we have a theory which makespredictions, and these predictions can be tested by observations.
    Understanding what the theory is and what predictions it makes is not trivial.First, many of the predictions are statistical. We don't predict that there should bea hot spot in the cosmic microwave background (CMB) at RA = 15h, dec= 27~.Rather, predictions are about the distribution and magnitude of hot and cold spots.Second, these predictions, and the theory on which they are based, involve lots ofsteps, many arguments drawn from a broad range of physics. For example, wewill see that the distribution of hot and cold spots in the CMB depends on quan-tum mechanics, general relativity, fluid dynamics, and the interaction of light withmatter. So we will indeed follow the first dictum of the Men of the Great Assem-bly and be patient before coming to judgment. Indeed, the fundamental measuresof structure in the universe--the power spectra of matter and radiation--agreeextraordinary well with the current cosmological theory, but we won't have thetools to understand this agreement completely until Chapters 7 and 8. Sober mindshave always knows that it pays to be patient before pronouncing judgment on ideasas lofty as those necessary to understand our Universe. The modern twist on this"Be patient" theme is that we need to set up the framework (in this case Chapters.
    目录
    1 The Standard Model and Beyond
    1.1 The Expanding Universe
    1.2 The Hubble Diagram
    1.3 Big Bang Nucleosynthesis
    1.4 The Cosmic Microwave Background
    1.5 Beyond the Standard Model
    1.6 Summary
    Exercises

    2 The Smooth, Expanding Universe
    2.1 General Relativity
    2.1.1 The Metric
    2.1.2 The Geodesic Equation
    2.1.3 Einstein Equations
    2.2 Distances
    2.3 Evolution of Energy
    2.4 Cosmic Inventory
    2.4.1 Photons
    2.4.2 Baryons
    2.4.3 Matter
    2.4.4 Neutrinos
    2.4.5 Dark Energy
    2.4.6 Epoch of Matter-Radiation Equality
    2.5 Summary
    Exercises
    Beyond Equilibrium

    3.1 Boltzmann Equation for Annihilation
    3.2 Big Bang Nucleosynthesis
    3.2.1 Neutron Abundance
    3.2.2 Light Element Abundances
    3.3 Recombination
    3.4 Dark Matter
    3.5 Summary
    Exercises

    4 The Boltzmann Equations
    4.1 The Boltzmann Equation for the Harmonic Oscillator
    4.2 The Collisionless Boltzmann Equation for Photons
    4.2.1 Zero-Order Equation
    4.2.2 First-Order Equation
    4.3 Collision Terms: Compton Scattering
    4.4 The Boltzmann Equation for Photons
    4.5 The Boltzmann Equation for Cold Dark Matter
    4.6 The Boltzmann Equation for Baryons
    4.7 Summary
    Exercises

    5 Einstein Equations
    5.1 The Perturbed Ricci Tensor and Scalar
    5.1.1 Christoffel Symbols
    5.1.2 Ricci Tensor
    5.2 Two Components of the Einstein Equations
    5.3 Tensor Perturbations
    5.3.2 Ricci Tensor for Tensor Perturbations
    5.3.3 Einstein Equations for Tensor Perturbations
    5.4 The Decomposition Theorem
    5.5 From Gauge to Gauge
    5.6 Summary
    Exercises

    6 Initial Conditions
    6.1 The Einstein-Boltzmann Equations at Early Times
    6.2 The Horizon'
    6.3 Inflation
    6.3.1 A Solution to the Horizon Problem
    6.3.2 Negative Pressure
    6.3.3 Implementation with a Scalar Field
    6.4 Gravity Wave Production
    6.4.1 Quantizing the Harmonic Oscillator
    6.4.2 Tensor Perturbations
    6.5 Scalar Perturbations
    6.5.1 Scalar Field Perturbations around a Smooth Background
    6.5.2 Super-Horizon Perturbations
    6.5.3 Spatially Flat Slicing
    6.6 Summary and Spectral Indices
    Exercises

    7 Inhomogeneities
    7.1 Prelude
    7.1.1 Three Stages of Evolution
    7.1.2 Method
    7.2 Large Scales
    7.2.1 Super-horizon Solution
    7.2.2 Through Horizon Crossing
    7.3 Small Scales
    7.3.1 Horizon Crossing
    7.3.2 Sub-horizon Evolution
    7.4 Numerical Results and Fits
    7.5 Growth Function
    7.6 Beyond Cold Dark Matter
    7.6.1 Baryons
    7.6.2 Massive Neutrinos
    7.6.3 Dark Energy
    Exercises

    8 Anisotropies
    8.1 Overview
    8.2 Large-Scale Anisotropies
    8.3 Acoustic Oscillations
    8.3.1 Tightly Coupled Limit of the Boltzmann Equations
    8.3.2 Tightly Coupled Solutions
    8.4 Diffusion Damping
    8.5 Inhomogeneities to Anisotropies
    8.5.1 Free Streaming
    8.5.2 The Cl's
    8.6 The Anisotropy Spectrum Today
    8.6.1 Sachs-Wolfe Effect
    8.6.2 Small Scales
    8.7 Cosmological Parameters
    8.7.1 Curvature
    8.7.2 Degenerate Parameters
    8.7.3 Distinct Imprints
    Exercises

    9 Probes of Inhomogeneities
    9.1 Angular Correlations
    9.2 Peculiar Velocities
    9.3 Direct Measurements of Peculiar Velocities
    9.4 Redshift Space Distortions
    9.5 Galaxy Clusters
    Exercises

    10 Weak Lensing and Polarization
    10.1 Gravitational Distortion of Images
    10.2 Geodesics and Shear
    10.3 Ellipticity as an Estimator of Shear
    10.4 Weak Lensing Power Spectrum
    10.5 Polarization: The Quadrupole and the Q/U Decomposition
    10.6 Polarization from a Single Plane Wave
    10.7 Boltzmann Solution
    10.8 Polarization Power Spectra
    10.9 Detecting Gravity Waves
    Exercises

    11 Analysis
    11.1 The Likelihood Function
    11.1.1 Simple Example
    11.1.2 CMB Likelihood
    11.1.3 Galaxy Surveys
    11.2 Signal Covariance Matrix
    11.2.1 CMB Window Functions
    11.2.2 Examples of CMB Window Functions
    11.2.3 Window Functions for Galaxy Surveys
    11.2.4 Summary
    11.3 Estimating the Likelihood Function
    11.3.1 Karhunen-Loeve Techniques
    11.3.2 Optimal Quadratic Estimator
    11.4 The Fisher Matrix: Limits and Applications
    11.4.1 CMB
    11.4.2 Galaxy Surveys
    11.4.3 Forecasting
    11.5 Mapmaking and Inversion
    11.6 Systematics
    11.6.1 Foregrounds
    11.6.2 Mode Subtraction
    Exercises

    A Solutions to Selected Problems
    B Numbers
    B.1 Physical Constants
    B.2 Cosmological Constants
    C Special Functions
    C.1 Legendre Polynomials
    C.2 Spherical Harmonics
    C.3 Spherical Bessel Functions
    C.4 Fourier Transforms
    C.5 Miscellaneous
    D Symbols
    Bibliography
    Index
    ……

    与描述相符

    100

    北京 天津 河北 山西 内蒙古 辽宁 吉林 黑龙江 上海 江苏 浙江 安徽 福建 江西 山东 河南 湖北 湖南 广东 广西 海南 重庆 四川 贵州 云南 西藏 陕西 甘肃 青海 宁夏 新疆 台湾 香港 澳门 海外