您好,欢迎光临有路网!
Vibration Utilization Engineering(振动利用工程)
QQ咨询:
有路璐璐:

Vibration Utilization Engineering(振动利用工程)

  • 作者:闻邦椿,(美)黄显利,李以农,张义民
  • 出版社:华中科技大学出版社
  • ISBN:9787568087650
  • 出版日期:2023年02月01日
  • 页数:376
  • 定价:¥198.00
  • 分享领佣金
    手机购买
    城市
    店铺名称
    店主联系方式
    店铺售价
    库存
    店铺得分/总交易量
    发布时间
    操作

    新书比价

    网站名称
    书名
    售价
    优惠
    操作

    图书详情

    内容提要
    This book contains seven chapters. Chapter 1 introduces the formation and devel?opment of the Vibration Utilization Engineering; Chap. 2 devotes to some of the important research results in the vibration and waveenergy utilization in some technological processes; Chap. 3 describes the theories on the technological process of the vibration utilization technology and equipments; Chaps. 4 and 5 discuss the vibration utilizations of the linear, pseudo-linear, and non-linear systems; Chap. 6 presents
    目录
    1 Formation and Development of Vibration Utilization Engineering ................................................... 1 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Vibrating Machines and Instruments and Application of Its Related Technology and Development . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Applications and Developments of Nonlinear Vibration Utilization Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.4 Applications and Developments of Wave Motion and Wave Energy Utilization Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.5 Applications of Electrics, Magnetic and Light Oscillators in Engineering Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.6 Applications of Electrics, Magnetic and Light Oscillators in Engineering Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 1.7 Vibrating Phenomena, Patterns and Utilization in Natures . . . . . . . 18 1.8 Vibrating Phenomena, Patterns and Utilization in Human Society . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 1.9 Vista . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2 Some Important Results in Vibration and Wave Utilization Engineering Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.1 Utilization of Vibrating Conveyors Technology . . . . . . . . . . . . . . . . 22 2.2 Applications of Vibrating Screening Technology . . . . . . . . . . . . . . . 24 2.3 Applications of Vibrating Centrifugal Hydro-Extraction and Screening Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.4 Applications of Vibrating Crush and Milling Technology . . . . . . . . 29 2.5 Applications of Vibrating Rolling and Forming Technology . . . . . 31 2.6 Applications of Vibrating Tamping Technology . . . . . . . . . . . . . . . . 33 2.7 Applications of Vibrating Ramming Technology . . . . . . . . . . . . . . . 34 2.8 Applications of Vibration Diagnostics Technology . . . . . . . . . . . . . 35 2.9 Applications of Synchronous Vibrating Theory . . . . . . . . . . . . . . . . 37 2.10 Applications of Resonance Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 2.10.1 The General Utilization of the Resonance . . . . . . . . . . . . . 38 2.10.2 Application of the Nuclear Magnetic Resonance . . . . . . . . 39 2.11 Applications of Hysteresis System . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 2.12 Applications of Impact Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 2.13 Applications of Slow-Changing Parameter Systems . . . . . . . . . . . . 42 2.14 Applications of Chaos Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 2.15 Applications of Piecewise Inertial Force . . . . . . . . . . . . . . . . . . . . . . 44 2.16 Applications of Piecewise Restoring Force . . . . . . . . . . . . . . . . . . . . 45 2.17 Utilization of Water Wave and Wind Wave . . . . . . . . . . . . . . . . . . . . 46 2.18 Applications of Tense or Elastic Waves . . . . . . . . . . . . . . . . . . . . . . . 47 2.19 Utilization of Supersonic Theory and Technology . . . . . . . . . . . . . . 47 2.19.1 The Application of the Supersonic Motor . . . . . . . . . . . . . . 48 2.19.2 Significance and Function in Medical Diagnostics of B-Ultrasound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 2.20 Applications of Optical Fiber and Laser Technology . . . . . . . . . . . . 49 2.20.1 Application of the Optical Fiber Technology . . . . . . . . . . . 49 2.20.2 Application of Laser Technology . . . . . . . . . . . . . . . . . . . . . 50 2.21 Utilizations of Ray Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 2.22 Utilization of Oscillation Theory and Technology . . . . . . . . . . . . . . 51 2.23 Utilization of Vibrating Phenomena and Patterns in Meteorology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 2.24 Utilization of Vibrating Phenomena and Patterns in Social Economy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 2.25 Utilizations of Vibrating Principles in Biology Engineering and Medical Equipments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 3 Theory of Vibration Utilization Technology and Equipment Technological Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.1 Theory and Technological Parameter Computation of Material Movement on Line Vibration Machine . . . . . . . . . . . . . 57 3.1.1 Theory of Sliding Movement of Materials . . . . . . . . . . . . . 58 3.1.2 Theory of Material Throwing Movement . . . . . . . . . . . . . . 69 3.1.3 Selections of Material Movement State and Kinematics Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 76 3.1.4 Calculation of Real Conveying Speed and Productivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 3.1.5 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 3.2 Theory and Technological Parameter Computation of Circular and Ellipse Vibration Machine . . . . . . . . . . . . . . . . . . . . 89 3.2.1 Displacement, Velocity and Acceleration of Vibrating Bed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 3.2.2 Theory of Material Sliding Movements . . . . . . . . . . . . . . . 91 3.2.3 Theory of Material Throwing Movements . . . . . . . . . . . . . 96 Contents xiii 3.3 Basic Characteristics of Material Movement in Non-harmonic Vibration Machines . . . . . . . . . . . . . . . . . . . . . . . . 102 3.3.1 Initial Conditions for Positive and Negative Sliding Movements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 3.3.2 Stopping Conditions for Positive and Negative Sliding Movements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 3.3.3 Calculations of Averaged Material Velocity . . . . . . . . . . . . 104 3.4 Theory on Material Movement in Vibrating Centrifugal Hydroextractor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 3.4.1 Basic Characteristics of Material Movement on Upright Vibration Hydroextractor . . . . . . . . . . . . . . . . . 106 3.4.2 Characteristics of Material Movement on Horizontal Vibration Hydroextractor . . . . . . . . . . . . . . . 114 3.4.3 Computation of Kinematics and Technological Parameters of Vibration Centrifugal Hydroextractor . . . . . 115 3.5 Probability Theory on Material Screening Process . . . . . . . . . . . . . . 119 3.5.1 Probability of Screening for Material Particle Per Jump . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 3.5.2 Falling Incline Angle and Number of Jumps of Materials on Screen Length . . . . . . . . . . . . . . . . . . . . . . . 123 3.5.3 Calculation of Probability of Material Going Through Screens for a General Vibration Screen . . . . . . . . 124 3.5.4 Calculation of Probability of Material Going Through Screens for a Multi-screen Vibrating Screen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 3.6 Classification of Screening Method and Probability Thick-Layer Screening Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 3.6.1 Screening Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 3.6.2 Screening Methods for Probability Thick Layer Screens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 3.7 Dynamic Theory of Vibrating Machine Technological Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 4 Linear and Pseudo Linear Vibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 4.1 Dynamics of Non-resonant Vibrating Machines of Planer Single-Axis Inertial Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 4.2 Dynamics of Non-resonant Vibrating Machines of Spatial Single-Axis Inertial Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 4.3 Dynamics of Non-resonant Vibration Machines of Double-Axis Inertial Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 4.3.1 Dynamics of Non-resonant Vibrating Machines of Planer Double-Axis Inertial Type . . . . . . . . . . . . . . . . . . 153 4.3.2 Dynamics of Non-resonant Vibration Machines of Spatial Double-Axis Inertial Type . . . . . . . . . . . . . . . . . . 157 xiv Contents 4.4 Dynamics of Non-resonant Vibration Machines of Multi-axis Inertial Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 4.4.1 General Pattern of Planer Movement . . . . . . . . . . . . . . . . . . 159 4.4.2 Values of Displacement, Velocity and Acceleration Curves and Differential Coefficients When θ2 is Equal to /2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 4.5 Dynamics of Inertial Near-Resonant Type of Vibration Machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 4.5.1 Dynamics of Single Body Near-Resonant Vibration Machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 4.5.2 Dynamics of Double Body Near-Resonant Vibration Machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 4.6 Dynamics of Single Body Elastic Connecting Rod Type of Near Resonance Vibration Machines . . . . . . . . . . . . . . . . . . . . . . . 168 4.7 Dynamics of Double Body Elastic Connecting Rod Type of Near Resonance Vibration Machines . . . . . . . . . . . . . . . . . . . . . . . 171 4.7.1 Balanced Type of Vibration Machines with Double Body Elastically Connecting Rod . . . . . . . . . . . . . . . . . . . . 171 4.7.2 Non-balance Double Body Type of Elastically Connecting Rod Vibration Machines . . . . . . . . . . . . . . . . . . 173 4.8 Multi-body Elastic-Connecting Rod Type of Near-Resonant Vibration Machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 4.9 Dynamics of Electric–Magnetic Resonant Type of Vibrating Machines with Harmonic Electric–Magnetic Force . . . . . . . . . . . . . 180 4.9.1 Basic Categories of Electric–Magnetic Forces of Electric–Magnetic Vibration Machines . . . . . . . . . . . . . 180 4.9.2 Dynamics of Electric–Magnetic Type of Vibrating Machines with Harmonic Electric–Magnetic Force . . . . . 180 4.9.3 Amplitudes and Phase Angle Differentials of One-Half-Period Rectification EMTVM . . . . . . . . . . . . 184 4.9.4 Amplitudes and Phase Angle Differentials of One-Half-Period Plus One-Period Rectification EMTVM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 4.10 Dynamics of Electric–Magnetic Type of Near-Resonant Vibration Machines with Non-Harmonic Electric–Magnetic Force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186 4.10.1 Relationships Between Electric–Magnetic Force and Amplitudes of Controlled One-Half-Period Rectification EMTVM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 4.10.2 Relationships Between Electric–Magnetic Force and Amplitudes of the Decreased Frequency EMTVM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190 Contents xv 5 Utilization of Nonlinear Vibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 5.2 Utilization of Smooth Nonlinear Vibration Systems . . . . . . . . . . . . 201 5.2.1 Measurement of Dry Friction Coefficients Between Axis and Its Bushing Using Double Pendulum . . . . . . . . . 201 5.2.2 Measurement of Dynamic Friction Coefficients of Rolling Bearing Using Flode Pendulum . . . . . . . . . . . . . 203 5.2.3 Increase the Stability of Vibrating Machines Using Hard-Smooth Nonlinear Vibrating Systems . . . . . . . . . . . . 207 5.3 Engineering Utilization of Piece-Wise-Linear Nonlinear Vibration Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210 5.3.1 Hard-Symmetric Piece-Wise Linear Vibration Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210 5.3.2 Soft-Asymmetric Piece-Wise Linear Vibration Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213 5.3.3 Nonlinear Vibration Systems with Complex Piece-Wise Linearity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218 5.4 Utilization of Vibration Systems with Hysteresis Nonlinear Force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222 5.4.1 Simplest Hysteresis Systems . . . . . . . . . . . . . . . . . . . . . . . . 223 5.4.2 Hysteresis Systems with Gaps . . . . . . . . . . . . . . . . . . . . . . . 226 5.5 Utilization of Self-excited Vibration Systems . . . . . . . . . . . . . . . . . . 231 5.6 Utilization of Nonlinear Vibration Systems with Impact . . . . . . . . . 233 5.7 Utilization of Frequency-Entrainment Principles . . . . . . . . . . . . . . . 236 5.7.1 Synchronous Theory of Self-synchronous Vibrating Machine with Eccentric Exciter . . . . . . . . . . . . . . . . . . . . . . 238 5.7.2 Double Frequency Synchronization of Nonlinear Self-synchronous Vibration Machines . . . . . . . . . . . . . . . . . 250 5.8 Utilization of Nonlinear Vibration Systems with Nonlinear Inertial Force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259 5.8.1 Movement Equations for Vibration Centrifugal Hydro-Extractor with Nonlinear Inertial Force . . . . . . . . . 259 5.8.2 Nonlinear Vibration Responses of Vibration Centrifugal Hydro-Extractor . . . . . . . . . . . . . . . . . . . . . . . . . 261 5.8.3 Frequency-Magnitude Characteristics of Vibration Centrifugal Hydro-Extractor . . . . . . . . . . . . . . . . . . . . . . . . . 263 5.8.4 Experiment Vibration Responses of Vibration Centrifugal Hydro-Extractor . . . . . . . . . . . . . . . . . . . . . . . . . 264 5.9 Utilization of Slowly-Changing Parameter Nonlinear Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265 5.9.1 Slowly-Changing Systems Formed in Processes of Starting and Stopping . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266 5.9.2 Slowly-Changing Rotor Systems Formed in Active Control Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267 xvi Contents 5.10 Utilization of Chaos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271 5.10.1 Major Methods for Studying Chaos . . . . . . . . . . . . . . . . . . . 271 5.10.2 Software of Studying Chaos Problems . . . . . . . . . . . . . . . . 273 5.10.3 Application Examples of Chaos . . . . . . . . . . . . . . . . . . . . . . 275 6 Utilization of Wave and Wave Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285 6.1 Utilization of Tidal Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285 6.2 Utilization of Sea Wave Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287 6.3 Utilization of Stress Wave in Vibrating Oil Exploration . . . . . . . . . 288 6.3.1 Mechanism and Working Principles of Controllable Super-Low Frequency Vibration Exciters . . . . . . . . . . . . . . 289 6.3.2 Effect of Stress Wave on Oil Layers . . . . . . . . . . . . . . . . . . 290 6.3.3 Experiment Results and Analysis . . . . . . . . . . . . . . . . . . . . . 299 6.3.4 Elastic Stress Wave Propagation When a Controllable Vibration Source is Working . . . . . . . . . . . . 305 7 Utilization of Vibrating Phenomena and Patterns in Nature and Society . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309 7.1 Utilization of Vibration Phenomena and Patterns in Meteorology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309 7.2 Periodical Vibration and Utilization of the Tide . . . . . . . . . . . . . . . . 316 7.3 Vibration Patterns and Utilization in Other Natural Phenomena . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318 7.3.1 Periodical Phenomenon of Tree Year-Rings . . . . . . . . . . . . 318 7.3.2 Bee’s Communications Using Vibrations . . . . . . . . . . . . . . 319 7.4 Utilization of Vibration Phenomena and Patterns in Some Economy Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320 7.4.1 Fluctuation and Nonlinear Characteristics in Social Economy Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320 7.4.2 Growth and Decline Period in Social Economy Development Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324 7.4.3 Active Role of Macro-adjustment in Preventing Big Economy Fluctuations . . . . . . . . . . . . . . . . . . . . . . . . . . 325 7.5 Utilization of Vibration Phenomena and Patterns in Stock Market . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326 7.5.1 Stock Fluctuation is One of Typical Types of Economy Change Form in Social Economy Fields . . . . 326 7.5.2 Stock Market Characteristics and General Patterns of Oscillation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328 7.5.3 Some Principles in Stock Operations . . . . . . . . . . . . . . . . . . 332 7.6 Obey the General Rules in the Stock Operations . . . . . . . . . . . . . . . 332 7.7 The Entering Point and Withdrawing Points in the Stock Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334 Contents xvii 7.8 Utilization of Vibration Phenomena and Pattern in Human Body . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335 7.8.1 Vibration is a Basic Existing Form of Many Human Organs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335 7.8.2 Some Diseases Make Abnormal Fluctuations (Vibration) in Human Organs Physical Parameters . . . . . . 336 7.8.3 Medical Devices and Equipment Based on Vibration Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341 7.8.4 Artificial Organs and Devices Using Vibration Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342 7.9 Prospect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345

    与描述相符

    100

    北京 天津 河北 山西 内蒙古 辽宁 吉林 黑龙江 上海 江苏 浙江 安徽 福建 江西 山东 河南 湖北 湖南 广东 广西 海南 重庆 四川 贵州 云南 西藏 陕西 甘肃 青海 宁夏 新疆 台湾 香港 澳门 海外