您好,欢迎光临有路网!
Hardy-Littlewood方法(第2版)(英文版)
QQ咨询:
有路璐璐:

Hardy-Littlewood方法(第2版)(英文版)

  • 作者:R.C.Vaughan
  • 出版社:世界图书出版社
  • ISBN:9787506239226
  • 出版日期:1998年08月01日
  • 页数:232
  • 定价:¥35.00
  • 分享领佣金
    手机购买
    城市
    店铺名称
    店主联系方式
    店铺售价
    库存
    店铺得分/总交易量
    发布时间
    操作

    新书比价

    网站名称
    书名
    售价
    优惠
    操作

    图书详情

    内容提要
    There have been two earlier Cambridge Tracts that have touched upon the Hardy-Littlewood method, namely those of Landau, 1937, and Estermann, 1952. However there has been no general account of the method published in the United Kingdom despite the not inconsiderable contribution of English scholars in inventing and developing the method and the numerous monographs that have appeared abroad. The purpose of this tract is to give an account of the classical forms of the method together with an outl
    目录
    Contents
    Preface
    Preface to second edition
    Notation
    1 Introduction and historical background
    1.1 Waring's problem
    1.2 The Hardy-Littlewood method
    1.3 Goldbach's problem
    1.4 Other problems
    1.5 Exercises
    2 The simplest upper bound for G(k)
    2.1 The definition ofmajor and minor arcs
    2.2 Auxiliary lemmas
    2.3 The treatment of the minor arcs
    2.4 The major arcs
    2.5 The singular integral
    2.6 The singular series
    2.7 Summary
    2.8 Exercises
    3 Goldbach's problems
    3.1 The ternary Goldbach problem
    3.2 The binary Goldbach problem
    3.3 Exercises
    4 The major arcs in Waring's problem
    4.1 The generating function
    4.2 The exponential sum S(q, a)
    4.3 The singular series
    4.4 The contribution from the major arcs
    4.5 The congruence condition
    4.6 Exercises
    5 Vinogradov's methods
    5.1 Vinogradov's mean value theorem
    5.2 The transition from the mean
    5.3 The minor arcs in Waring's problem
    5.4 An upper bound for G(k)
    5.5 Wooley's refinement of Vinogradov's mean value theorem
    5.6 Exercises
    6 Davenport's methods
    6.1 Sets ofsums of kth powers
    6.2 G(4) = 16
    6.3 Davenport's bounds for G(5) and G(6)
    6.4 Exercises
    7 Vinogradov's upper bound for G(k)
    7.1 Some remarks on Vinogradov's mean
    value theorem
    7.2 Preliminary estimates
    7.3 An asymptotic formula for J(X)
    7.4 Vinogradov's upper bound for G(k)
    7.5 Exercises
    8 A ternary additive problem
    8.1 A general conjecture
    8.2 Statement of the theorem
    8.3 Definition of major and minor arcs
    8.4 The treatment of n
    8.5 The major arcs y(q.a)
    8.6 The singular series
    8.7 Completion of the proof of Theorem 8.
    8.8 Exercises
    9 Homogeneous equations and Birch's theorem
    ……
    10 A theorem of Roth
    11 Diophantine inequalities
    12 Wooley's upper bound for G(k)
    Bibliography
    Index

    与描述相符

    100

    北京 天津 河北 山西 内蒙古 辽宁 吉林 黑龙江 上海 江苏 浙江 安徽 福建 江西 山东 河南 湖北 湖南 广东 广西 海南 重庆 四川 贵州 云南 西藏 陕西 甘肃 青海 宁夏 新疆 台湾 香港 澳门 海外