您好,欢迎光临有路网!
半导体输运和光学中的量子动力学
QQ咨询:
有路璐璐:

半导体输运和光学中的量子动力学

  • 作者:H.Haug nbsp
  • 出版社:世界图书出版社
  • ISBN:9787506214742
  • 出版日期:1999年11月01日
  • 页数:315
  • 定价:¥52.00
  • 分享领佣金
    手机购买
    城市
    店铺名称
    店主联系方式
    店铺售价
    库存
    店铺得分/总交易量
    发布时间
    操作

    新书比价

    网站名称
    书名
    售价
    优惠
    操作

    图书详情

    内容提要
    New textbooks on various aspects of theoretical physics seem to overflow the market. A prospective author must be able to provide convincing answers to at least the following questions (posed by the publisher, colleagues, and last but not least, by him/herself and the associated family members). (i) Why bother writing the book? (ii) Is there a sufficient audience for the text? (iii) Isn't the topic already covered by a number of books, and isn't the author's best hope just to add a new wrinkle t
    目录
    ContentsPart 1 Introduction to Kinetics and Many-Body Theory1. Boltzmann Equation1.1 Heuristic Derivationof the Semiclassical Boltzmann Equation1.2 Approach to Equilibrium, H-Theorem1.3 Linearization, Eigenfunction Expansion2. Numerical Solutions of the Boltzmann Equation2.1 Linearized Coulomb Boltzmann Kineticsof a 2D Electron Gas2.2 Ensemble Monte Carlo Simulation2.2.1 General Theory2.2.2 Simulation of the Relaxation Kineticsof a 2D Electron Gas2.3 N+N-N+-Structure: Boltzmann Equation Analysis3. Equilibrium Green Function Theory3.1 Second Quantization3.2 Green Functions3.2.1 Examples of Measurable Quantities3.3 Fluctuation-Dissipation Theorem3.4 Perturbation Expansion of the Green Function3.5 Examples of Simple Solvable Models3.5.1 Free-Particle Green Function3.5.2 Resonant-Level Model3.6 Self-Energy3.6.1 Electron-Phonon Interaction3.6.2 Elastic Impurity System; Impurity Averaging3.7 Finite TemperaturesPart 11 Nonequilibrium Many-Body Theory4. Contour Ordered Green Functions4.1 General Remarks4.2 Two Transformations4.3 Analytic Continuation5 Basic Quantum Kinetic Equations5.1 The Kadanoff-Baym Formulation5.2 The Keldysh Formulation6. Boltzmann Limit6.1 Gradient Expansion6.2 Quasiparticle Approximation6.3 Recovery of the Boltzmann Equation7 Gauge Invariance7.1 Choice of Variables7.2 Gauge Invariant Quantum Kinetic Equation7.2.1 Driving Term7.2.2 Collision Term7.3 Retarded Green Function8. Quantum Distribution Functions8.1 Relation to Observables, and the Wigner Function8.2 Generalized Kadanoff-Baym Ansatz8.3 Summary of the Main Formal ResultsPart III Quantum Transport in Semiconductors9. Linear Transport9.1 Quantum Boltzmann Equation9.2 Linear Conductivity of Electron-Elastic Impurity Systems9.2.1 Kubo Formula9.2.2 Quantum Kinetic Formulation9.3 Weak Localization Corrections to Electric Conductivity10. A Model for Dynamical Disorder:The Gaussian White Noise Model10.1 Introduction10.2 Determination of the Retarded Green Function10.3 Kinetic Equation for the GWN10.4 Other Transport Properties11. Quantum High-Field Transport in Semiconductors11.1 Introduction11.2 Free Green Functions and Spectral Functionsin an Electric Field11.3 Resonant-Level Model in High Electric Fields11.3.1 Introduction11.3.2 Retarded Green Function: Single Impurity Problem11.3.3 Retarded Green Function: Dilute Concentrationof Impurities11.3.4 Analytic Continuation11.3.5 Quantum Kinetic Equation11.4 Quantum Kinetic Equation for Electron-Phonon Systems11.5 An Application:Collision Broadening for a Model Semiconductor11.5.1 Analytical Considerations11.5.2 A Simple Model:Optical Phonon Emission at T = 011.6 Spatially Inhomogeneous Systems12. Transport in Mesoscopic Semiconductor Structures12.1 Introduction12.2 Nonequilibrium Techniquesin Mesoscopic Tunneling Structures12.3 Model Hamiltonian12.4 General Expression for the Current12.5 Non-Interacting Resonant-Level Model12.6 Resonant Tunneling with Electron-Phonon Interactions12.7 Transport Through a Coulomb Island13. Time-Dependent Phenomena13.1 Introduction13.2 Applicability to Experiments13.3 Mathematical Formulation13.4 Average Current13.5 Time-Dependent Resonant-Level Model13.5.1 Response to Harmonic Modulation13.5.2 Response to Step-Like Modulation13.6 Linear-Response13.7 Fluctuating Energy LevelsPart IV Theory of Ultrafast Kineticsin Laser-Excited Semiconductors14. Optical Free-Carrier Interband Kineticsin Semiconductors14.1 Interband Transitions in Direct-Gap Semiconductors14.2 Free-Carrier Kinetics Under Laser-Pulse Excitation14.3 The Optical Free-Carrier Bloch Equations15. Interband Quantum Kineticswith LO-Phonon Scattering15.1 Derivation of the Interband Quantum Kinetic Equations15.2 Approximations for the Green Functions G and G15.3 Intraband Quantum Kinetics15.4 Linear Polarization Kinetics, Phonon Sidebands15.5 Coupled Interband Kinetic Equationsin Diagonal Approximation15.6 Numerical Studies16. Exciton Quantum Kinetics in Polar Semiconductors16.1 Interband Quantum Kinetic Equationswith Excitonic Effects16.2 Quantum Beats and Urbach Tail16.2.1 LO-Phonon Quantum Beats16.2.2 Urbach Tail Absorption16.3 Excitonic Optical Stark Effect16.4 Coupled Quantum Kinetics of Electrons and Phonons16.5 Quantum Coherence of the Green Functions17. Two-Pulse Excitation17.1 Calculation of the Photon Echo17.2 Calculation of the Four-Wave Mixing Signal17.3 Comparison with Four-Wave Mixing Experiments18. Coulomb Quantum Kinetics in a Dense Electron Gas18.1 Introduction18.2 Derivation of a Closed Quantum Kinetic Description18.3 Simplifying Approximations18.3.1 Initial Time Regime Without Screeningand Energy Conservation18.3.2 Time-Dependent Plasmon Pole Approximation18.3.3 Instantaneous Static Potential Approximation19. Interband Coulomb Quantum Kinetics,Optical Dephasing19.1 Interband Quantum Kinetic Equationswith Coulomb Interaction19.2 Early Stage of the Coulomb Quantum Kinetics19.3 Quasi-Classical Theory of the Polarization Decay20. The Build-Up of ScreeningAfter Ultra-Short Pulse Excitation20.1 The Model20.2 Numerical ResultsReferencesSubject Index

    与描述相符

    100

    北京 天津 河北 山西 内蒙古 辽宁 吉林 黑龙江 上海 江苏 浙江 安徽 福建 江西 山东 河南 湖北 湖南 广东 广西 海南 重庆 四川 贵州 云南 西藏 陕西 甘肃 青海 宁夏 新疆 台湾 香港 澳门 海外