您好,欢迎光临有路网!
Theory and Modeling of Dispersed Multiphase Turbulent Reacting Flows(弥散性多相湍流反应流动的理论与模拟)
QQ咨询:
有路璐璐:

Theory and Modeling of Dispersed Multiphase Turbulent Reacting Flows(弥散性多相湍流反应流动的理论与模拟)

  • 作者:周力行
  • 出版社:清华大学出版社
  • ISBN:9787302507543
  • 出版日期:2018年08月01日
  • 页数:0
  • 定价:¥99.00
  • 猜你也喜欢

    分享领佣金
    手机购买
    城市
    店铺名称
    店主联系方式
    店铺售价
    库存
    店铺得分/总交易量
    发布时间
    操作

    新书比价

    网站名称
    书名
    售价
    优惠
    操作

    图书详情

    文章节选
    Preface i Nomenclature iii Introduction v
    1. Some Fundamentals of DispersedMultiphase Flows 1
    1.1 Particle/SprayBasic Properties 1
    1.1.1 Particle/DropletSize and Its Distribution 1
    1.1.2 ApparentDensity and Volume Fraction 2
    1.2 ParticleDrag, Heat, and Mass Transfer 2
    1.3 Single-ParticleDynamics 3
    1.3.1
    1.3.2
    1.3.3
    1.3.4
    1.3.5
    1.3.6
    References<p>Preface i Nomenclature iii Introduction v </p> <p>1. Some Fundamentals of Dispersed Multiphase Flows 1 </p> <p>1.1 Particle/Spray Basic Properties 1 </p> <p>1.1.1 Particle/Droplet Size and Its Distribution 1 </p> <p>1.1.2 Apparent Density and Volume Fraction 2 </p> <p>1.2 Particle Drag, Heat, and Mass Transfer 2 </p> <p>1.3 Single-Particle Dynamics 3 </p> <p>1.3.1 </p> <p>1.3.2 </p> <p>1.3.3 </p> <p>1.3.4 </p> <p>1.3.5 </p> <p>1.3.6 </p> <p>References </p> <p>Single-Particle Motion Equation 3 Motion of a Single Particle in a Uniform Flow Field 4 Particle Gravitational Deposition 4 Forces Acting on Particles in Nonuniform Flow Field 5 </p> <p>1.3.4.1 Magnus Force 5 </p> <p>1.3.4.2 Saffman Force 5 </p> <p>1.3.4.3 Particle Thermophoresis, Electrophoresis, and Photophoresis 5 Generalized Particle Motion Equation 6 Recent Studies on Particle Dynamics 6 7 </p> <p>Further Reading 8 </p> <p> </p> <p> </p> <p>2. Basic Concepts and Description of Turbulence 9 </p> <p>2.1 Introduction 9 </p> <p>2.2 Time Averaging 9 </p> <p>2.3 Probability Density Function 10 </p> <p>2.4 Correlations, Length, and Time Scales 12 References 13 </p> <p> </p> <p>3. Fundamentals of Combustion Theory 15 </p> <p>3.1 Combustion and Flame 15 </p> <p>3.2 Basic Equations of Laminar Multicomponent Reacting Flows and Combustion 16 </p> <p>3.2.1 Thermodynamic Relationships of Multicomponent Gases 16 </p> <p>xiii </p> <p>3.2.2 Molecular Transport Laws of Multicomponent Reacting Gases 18 </p> <p>3.2.3 Basic Relationships of Chemical Kinetics 19 </p> <p>3.2.4 The Reynolds Transport Theorem 20 </p> <p>3.2.5 Continuity and Diffusion Equations 21 </p> <p>3.2.6 Momentum Equation 22 </p> <p>3.2.7 Energy Equation 23 </p> <p>3.2.8 Boundary Conditions at the Interface and Stefan Flux 26 </p> <p>3.3 Ignition and Extinction 30 </p> <p>3.3.1 Basic Concept 30 </p> <p>3.3.2 Dimensional Analysis 30 </p> <p>3.3.3 Ignition in an Enclosed Vessel—Simonov’s Unsteady Model 31 </p> <p>3.3.4 Ignition Lag (Induction Period) 34 </p> <p>3.3.5 Ignition by a Hot Plate—Khitrin-Goldenberg Model 35 </p> <p>3.3.6 Ignition and Extinction—Vulis Model 37 </p> <p>3.4 Laminar Premixed and Diffusion Combustion 41 </p> <p>3.4.1 Background 41 </p> <p>3.4.2 Basic Equations and Their Properties 41 </p> <p>3.4.3 Two-Zone Approximate Solution 43 </p> <p>3.4.4 Laminar Diffusion Flame 46 </p> <p>3.5 Droplet Evaporation and Combustion 47 </p> <p>3.5.1 Background 47 </p> <p>3.5.2 Droplet Evaporation in Stagnant Air 48 </p> <p>3.5.3 Basic Equations for Droplet Evaporation and Combustion 48 </p> <p>3.5.4 Droplet Evaporation With and Without Combustion 49 </p> <p>3.5.5 Droplet Evaporation and Combustion under Forced Convection 50 </p> <p>3.5.6 The d2 Law 52 </p> <p>3.5.7 Experimental Results 52 </p> <p>3.5.8 Droplet Ignition and Extinction 54 </p> <p>3.6 Solid-Fuel: Coal-Particle Combustion 54 </p> <p>3.6.1 Background 54 </p> <p>3.6.2 Coal Pyrolyzation (Devolatilization) 55 </p> <p>3.6.3 Carbon Oxidation 56 </p> <p>3.6.4 Carbon Oxidation—Basic Equations 56 </p> <p>3.6.5 Carbon Oxidation—Single-Flame-Surface Model-Only Reaction 1 or 2 at the Surface 57 </p> <p>3.6.6 Carbon Oxidation—Two-Flame-Surface Model 60 </p> <p>3.6.7 Coal-Particle Combustion 62 </p> <p>3.7 Turbulent Combustion and Flame Stabilization 64 </p> <p>3.7.1 Background 64 </p> <p>3.7.2 Turbulent Jet Diffusion Flame 64 </p> <p>3.7.3 Turbulent Premixed Flame—Damkohler-Shelkin’s Wrinkled-Flame Model 66 </p> <p>Contents xY </p> <p>3.7.4 Turbulent Premixed Flame—Summerfield-Shetinkov’s Volume Combustion Model 67 </p> <p>3.7.5 Flame Stabilization 67 </p> <p>3.8 Conclusion on Combustion Fundamentals 69 References 69 </p> <p> </p> <p>4. Basic Equations of Multiphase Turbulent Reacting Flows 71 </p> <p>4.1 The Control Volume in a Multiphase-Flow System 71 </p> <p>4.2 The Concept of Volume Averaging 72 </p> <p>4.3 “Microscopic” Conservation Equations Inside Each Phase 73 </p> <p>4.4 The Volume-Averaged Conservation Equations for Laminar/Instantaneous Multiphase Flows 73 </p> <p>4.5 The Reynolds-Averaged Equations for Dilute Multiphase Turbulent Reacting Flows 78 </p> <p>4.6 The PDF Equations for Turbulent Two-Phase Flows and Statistically Averaged Equations 80 </p> <p>4.7 The Two-Phase Reynolds Stress and Scalar Transport Equations 83 References 87 </p> <p> </p> <p>5. Modeling of Single-Phase Turbulence 89 </p> <p>5.1 Introduction 89 </p> <p>5.2 The Closure of Single-Phase Turbulent Kinetic Energy Equation 90 </p> <p>5.3 The k-ε Two-Equation Model and Its Application 92 </p> <p>5.4 The Second-Order Moment Closure of Single-Phase Turbulence 96 </p> <p>5.5 The Closed Model of Reynolds Stresses and Heat Fluxes 99 </p> <p>5.6 The Algebraic Stress and Flux Models—Extended k-ε Model 101 </p> <p>5.7 The Application of DSM and ASM Models and Their Comparison with Other Models 103 </p> <p>5.8 Large-Eddy Simulation 112 </p> <p>5.8.1 Filtration 112 </p> <p>5.8.2 SGS Stress Models 113 </p> <p>5.8.3 LES of Swirling Gas Flows 114 </p> <p>5.9 Direct Numerical Simulation 116 References 119 </p> <p> </p> <p>6. Modeling of Dispersed Multiphase Turbulent Flows 121 </p> <p>6.1 Introduction 121 </p> <p>6.2 The Hinze-Tchen’s Algebraic Model of Particle Turbulence 124 </p> <p>6.3 The Unified Second-Order Moment Two-Phase Turbulence Model 124 </p> <p>6.4 The k 2 ε 2 kp and k 2 ε 2 Ap Two-Phase Turbulence Model 128 </p> <p>6.5 The Application and Validation of USM, k 2 ε 2 kp -kpg and k 2 ε 2 Ap Models 129 </p> <p>6.6 An Improved Second-Order Moment Two-Phase Turbulence Model 134 </p> <p>6.7 The Mass-Weighted Averaged USM Two-Phase Turbulence Model 136 </p> <p>6.8 The DSM-PDF and k 2 ε-PDF Two-Phase Turbulence Models 141 </p> <p>6.9 An SOM-MC Model of Swirling Gas-Particle Flows 144 </p> <p>6.10 The Nonlinear k 2 ε 2 kp Two-Phase Turbulence Model 146 </p> <p>6.11 The Kinetic Theory Modeling of Dense Particle (Granular) Flows 150 </p> <p>6.12 Two-Phase Turbulence Models for Dense Gas-Particle Flows 153 </p> <p>6.13 The Eulerian-Lagrangian Simulation of Gas-Particle Flows 155 </p> <p>6.13.1 Governing Equations for the Deterministic Trajectory Model 156 </p> <p>6.13.2 Modification for Particle Turbulent Diffusion 157 </p> <p>6.13.3 The Stochastic Trajectory Model 159 </p> <p>6.13.4 The DEM Simulation of Dense Gas-Particle Flows 161 </p> <p>6.14 The Large-Eddy Simulation of Turbulent Gas-Particle Flows 163 </p> <p>6.14.1 Eulerian-Lagrangian LES of Swirling Gas-Particle Flows 165 </p> <p>6.14.2 Eulerian-Lagrangian LES of Bubble-Liquid Flows 166 </p> <p>6.14.3 Two-Fluid LES of Swirling Gas-Particle Flows 167 </p> <p>6.14.4 Application of LES in Engineering Gas-Particle Flows 170 </p> <p>6.15 The Direct Numerical Simulation of Dispersed Multiphase Flows 172 References 177 </p> <p> </p> <p>7. Modeling of Turbulent Combustion 183 </p> <p>7.1 Introduction 183 </p> <p>7.2 The Time-Averaged Reaction Rate 183 </p> <p>7.3 The Eddy-Break-Up (EBU) Model/Eddy Dissipation Model (EDM) 184 </p> <p>7.4 The Presumed PDF Models 186 </p> <p>7.4.1 The Probability Density Distribution Function 186 </p> <p>7.4.2 The Simplified PDF-Local Instantaneous Nonpremixed Fast-Chemistry Model 187 </p> <p>7.4.3 The Simplified PDF-Local Instantaneous Equilibrium Model 191 </p> <p>7.4.4 The Simplified-PDF Finite-Rate Model 194 </p> <p>7.5 The PDF Transport Equation Model 198 </p> <p>7.6 The Bray-Moss-Libby (BML) Model 200 </p> <p>7.7 The Conditional Moment Closure (CMC) Model 201 </p> <p>7.8 The Laminar-Flamelet Model 202 </p> <p>Contents xYii </p> <p>7.9 The Second-Order Moment Combustion Model 204 </p> <p>7.9.1 The Early Developed Second-Order Moment Model 204 </p> <p>7.9.2 An Updated Second-Order Moment (SOM) Model 207 </p> <p>7.9.3 Application of the SOM Model in RANS Modeling 208 </p> <p>7.9.4 Validation of the SOM Model by DNS 212 </p> <p>7.10 Modeling of Turbulent Two-Phase Combustion 215 </p> <p>7.10.1 Two-Fluid Modeling of Turbulent Two-Phase Combustion 216 </p> <p>7.10.2 Two-Fluid-Simulation of Coal Combustion in a Combustor with High-Velocity Jets 218 </p> <p>7.10.3 Two-Fluid Modeling of Coal Combustion and NO Formation in a Swirl Combustor 221 </p> <p>7.10.4 Eulerian-Lagrangian Modeling of Two-Phase Combustion 223 </p> <p>7.11 Large-Eddy Simulation of Turbulent Combustion 224 </p> <p>7.11.1 LES Equations and Closure Models for Simulating Gas Turbulent Combustion 224 </p> <p>7.11.2 LES of Swirling Diffusion Combustion, Jet Diffusion Combustion, and Bluff-Body Premixed Combustion 226 </p> <p>7.11.3 LES of Ethanol-Air Spray Combustion 232 </p> <p>7.11.4 LES of Swirling Coal Combustion 235 </p> <p>7.12 Direct Numerical Simulation of Turbulent Combustion 242 References 249 </p> <p> </p> <p>8. The Solution Procedure for Modeling Multiphase Turbulent Reacting Flows 253 </p> <p>8.1 The PSIC Algorithm for Eulerian-Lagrangian Models 253 </p> <p>8.2 The LEAGAP Algorithm for E-E-L Modeling 256 </p> <p>8.3 The PERT Algorithm for Eulerian-Eulerian Modeling 257 </p> <p>8.4 The GENMIX-2P and IPSA Algorithms for Eulerian-Eulerian Modeling 257 References 260 </p> <p> </p> <p>9. Simulation of Flows and Combustion in Practical Fluid Machines, Combustors, and Furnaces 261 </p> <p>9.1 An Oil-Water Hydrocyclone 261 </p> <p>9.2 A Gas-Solid Cyclone Separator 262 </p> <p>9.3 A Nonslagging Vortex Coal Combustor 266 </p> <p>9.4 A Spouting-Cyclone Coal Combustor 268 </p> <p>9.5 Pulverized-Coal Furnaces 273 </p> <p>9.6 Spray Combustors 290 </p> <p>9.7 Concluding Remarks 307 References 308 </p> <p>Index 311</p>显示全部信息前 言Multiphase, turbulent, and reacting flows are widely encountered in engi-neering and the natural environment. The basic theory, phenomena, mathe-matical models, numerical simulations, and applications of multiphase (gas or liquid flows with particles/droplets or bubbles), turbulent reacting flows are presented in this book. The special feature of this book is in combining the multiphase fluid dynamics with the turbulence modeling theory and reacting fluid dynamics (combustion theory). There are nine chapters in this book, namely: “Fundamentals of Dispersed Multiphase Flows”; “Basic Concepts and Description of Turbulence”; “Fundamentals of Combustion Theory”; “Basic Equations of Multiphase Turbulent Reacting Flows”; “Modeling of Single-Phase Turbulent Flows”; “Modeling of Dispersed Multiphase Turbulent Flows”; “Modeling of Turbulent Combustion”; “The Solution Procedure for Modeling Multiphase Turbulent Reacting Flows”; and “Simulation of Flows and Combustion in Practical Fluid Machines, Combustors and Furnaces.” The main difference between this book and pre-vious books written by the author is that more much better descriptions of basic equations and closure models of multiphase turbulent reacting flows are introduced, and recent advances made by the author and other investiga-tors between 1994 and 2016 are included. This book serves as a reference book for teaching, research, and engi-neering design for faculty members, students, and research engineers in the fields of fluid dynamics, thermal science and engineering, aeronautical, astronautical, chemical, metallurgical, petroleum, nuclear, and hydraulic engineering. The author wishes to thank Prof. F.G. Zhuang, H.X. Zhang, and C.K. Wu for their valuable comments and suggestions. Thanks also go to colleagues and former students: Prof. W.Y. Lin, R.X. Li, X.L. Wang, J. Zhang, B. Zhou, Y.C. Guo, H.Q. Zhang, L.Y. Hu, Y. Yu, F. Wang, Z.X. Zeng, K. Li, Y. Zhang; Drs. Gene X.Q. Huang, T. Hong, C.M. Liao, W.W. Luo, K.M. Sun, Y. Li, T. Chen, Y. Xu, G. Luo, M. Yang, L. Li, H.X. Gu, X.L. Chen, X. Zhang, and Y. Liu. Their research results under the direction and coopera-tion of the author contributed to the context of this book. Finally, the author’s gratitude is given to the editors from Elsevier and the Executive Editor, Dr. Qiang Li from the Tsinghua University Press for their hard work in the final editing and publishing of this book. Any comments and suggestions from the experts and readers would be highly appreciated. Lixing Zhou Tsinghua University, Beijing, China February, 2017显示全部信息免费在线读Chapter 1
    目录
    Preface i Nomenclature iii Introduction v
    1. Some Fundamentals of DispersedMultiphase Flows 1
    1.1 Particle/SprayBasic Properties 1
    1.1.1 Particle/DropletSize and Its Distribution 1
    1.1.2 ApparentDensity and Volume Fraction 2
    1.2 ParticleDrag, Heat, and Mass Transfer 2
    1.3 Single-ParticleDynamics 3
    1.3.1
    1.3.2
    1.3.3
    1.3.4
    1.3.5
    1.3.6
    References
    编辑推荐语
    多相湍流反应与湍动燃烧的扛鼎之作。 

    与描述相符

    100

    北京 天津 河北 山西 内蒙古 辽宁 吉林 黑龙江 上海 江苏 浙江 安徽 福建 江西 山东 河南 湖北 湖南 广东 广西 海南 重庆 四川 贵州 云南 西藏 陕西 甘肃 青海 宁夏 新疆 台湾 香港 澳门 海外