您好,欢迎光临有路网!
医药高等数学(第6版)
QQ咨询:
有路璐璐:

医药高等数学(第6版)

  • 作者:钱微微,林剑鸣
  • 出版社:科学出版社
  • ISBN:9787030667731
  • 出版日期:2020年12月01日
  • 页数:267
  • 定价:¥43.00
  • 分享领佣金
    手机购买
    城市
    店铺名称
    店主联系方式
    店铺售价
    库存
    店铺得分/总交易量
    发布时间
    操作

    新书比价

    网站名称
    书名
    售价
    优惠
    操作

    图书详情

    内容提要
    《医药高等数学(第6版)》由全国12所中医院校长期从事数学教学工作的教师联合编写。《医药高等数学(第6版)》分10章,包括一元函数微积分、空间解析几何、多元函数微积分、微分方程与无穷级数等。编写中既注意了数学学科本身的科学性与系统性,同时又注意了它在中医药学科里的应用。《医药高等数学(第6版)》文字简洁、内容精炼、由浅入深,章后有习题,书后附有答案,同时还有《医药高等数学学习辅导》(第5版)配套使用。
    文章节选
    **章 函数与极限
    高等数学是研究变量的一门科学,它的主要研究对象是函数.极限方法是高等数学的基础,它从方法论上突出地表现了高等数学不同于初等数学的特点.本章将介绍函数和极限的基本概念,建立极限的运算法则,给出函数连续性的定义及性质.
    §1-1 函数
    1-1.1 函数的概念
    一、常量与变量
    在观察和研究某一变化过程时,会遇到各种各样的量,如温度、时间、路程、重量、体积、血压、物价、利率等. 其中有的量在过程中不变化,也就是保持一定的数值,这种量叫做常量;还有一些量在过程中是变化着的,也就是可以取不同的数值,这种量叫做变量.
    常量与变量的划分是相对的,它依赖于研究问题的场合,同一个量在某种场合下是常量,在另一种场合下则可能为变量.例如,重力加速度在地球表面一个不大的范围内是常量,在一个广大的范围内就是变量.
    也有这种情况,某些量在整个过程中是变化的,但在过程的某一阶段可以看做常量.例如,人的身高在**内看成常量,商品的价格在短期内看成是常量.
    二、函数的概念
    在自然现象和现实生活中,在某一变化过程中同时牵涉到几个变量,它们通常不是孤立的,而���遵循一定的规律相互依赖又相互制约地变化的,如下面的例子.
    图1-1
    例1 球的体积V与半径R之间有关系式V=43πR3,当R取(0,+∞)中的任一个值时,按照这个关系可以**地确定V的一个值与之对应.
    例2 气象台气温记录仪所记下的某**24小时内的气温曲线如图1-1所示,横坐标t表示时间,纵坐标T表示气温.这条曲线表示了时间t和气温T之间的关系.对于[0,24]上的任一个值t0,通过图像可以**地确定该时刻的气温T0.
    上面的两个例子,虽然实际意义各有不同,变量间的对应关系也是用不同方式表达的,但它们都表达了两个变量之间的相依关系. 当其中一个变量在某范围内每取一个数值时,按照一定的规律(对应的法则),另一变量就有**确定的值与之对应.由此,可以抽象出函数的定义.
    定义1设有两个变量x和y,D为一非空数集,如果对于D内每个数x,变量y按一定的法则f总有**确定的数值与之对应,则称y是x的函数.记作
    y=f(x)
    数集D称为该函数的定义域,x叫做自变量,y叫做因变量,自变量取x0时的函数值记成 f(x0)或y|x=x0,全体函数值的集合M={y|y=f(x),x∈D}(1-1)称为函数的值域.
    函数的定义中,涉及定义域、对应法则和值域三个因素. 很明显,只要定义域和对应法则确定了,值域也就随之确定. 因此,定义域和对应法则是确定函数的两个要素. 例如,y=lnx3与y=3lnx,两要素都相同,所以是同一函数;而y=x2-1x-1与y=x+1,因定义域不同,不是同一函数.
    三、函数的表示法
    常用的函数表示法有:解析法(公式法)、列表法、图像法.
    1. 解析法
    用数学运算式子来表示变量间关系的方法,称为解析法(公式法), 如例1是用解析法表示的函数. 用解析法表示函数便于计算和理论分析,在高等数学中讨论的函数,大都用这种方法表示.
    2. 列表法
    列表法即把一系列自变量的值及其对应的函数值列成一个表格来表示函数关系, 如对数表、三角函数表等. 列表法使用方便,可以不用计算直接从表上读出函数值.
    3. 图像法
    图像法用坐标平面内的图形(一般是曲线)表示变量间的函数关系, 如例2中的函数关系. 图像法的优点是直观、形象、函数特征一目了然,对研究有一定的启发性.
    在实际问题中,上述三种方法常结合应用. 四、函数的基本性质
    1. 函数的有界性
    设函数f(x)在区间I上有定义,若存在一个正数M,使得当x∈I时,恒有
    f(x)≤M
    成立,则称函数f(x)在I上有界,如果这样的正数M不存在,则称f(x)在I上无界. 如果函数f(x)在其定义域内有界,则称f(x)为有界函数.
    例如,y=sinx在定义域(-∞,+∞)内是有界的,因而是有界函数. 而y=1x在区间(0,1)内是无界的.
    显然,如果函数y=f(x)在区间I上有界,则它的图形在I上必介于平行线y=±M之间.
    2. 函数的奇偶性
    设函数f(x)的定义域为对称区间(-L,L)(也可以是[-L,L],(-∞,+∞)),如对于定义域的任一x都满足
    f(-x)=-f(x)(或f(-x)=f(x))
    则称函数f(x)为奇函数(或偶函数),否则称为非奇非偶函数.
    例如,函数f(x)=ex+e-x2为偶函数,f(x)=x3+sinx为奇函数,而f(x)=ex是非奇非偶函数.
    偶函数的图形关于y轴对称,奇函数的图形关于原点对称.
    3. 函数的单调性
    设函数f(x)在区间I上有定义,如果对于区间I上任意两点x1,x2,当x1 f(x1)f(x2))
    则称函数f(x)在区间I上单调增加(或单调减少).
    例如,函数y=x2在(-∞,0]上单调减少,而在[0,+∞)上单调增加.
    单调增加函数和单调减少函数统称为单调函数.
    4. 函数的周期性
    设有函数f(x),如果存在一个不为零的数T,使得对于定义域的任一实数x,都有
    f(x+T)=f(x)
    则称函数f(x)为周期函数,T为函数的周期,通常我们说周期函数的周期指的是*小正周期.
    例如,函数sinx,cosx都是以2π为周期的函数,而tanx,cotx的周期为π.
    1-1.2 分段函数、反函数、复合函数
    一、分段函数
    在实际问题中,经常会遇到一个函数在其定义域内的不同区间上用不同解析式表示的情形. 图1-2例如,脉冲发生器产生一个如图1-2所示的三角波,它的电压u与时间t的关系为
    u(t)=32t,0≤t<10-32(t-20),10≤t≤20
    它表示了在不同时间区间内电压变化的不同规律.
    如果一个函数在其定义域的不同区间上用不同的解析式表示,则称这种形式的函数为分段函数,必须注意,虽然分段函数在其自变量变化的不同范围内有不同的表达式,但它只是一个函数.
    例如,函数的图形如图1-3所示. 它的定义域为(-∞,+∞),当自变量取(0,+∞)内的数值时,对应的函数值由y=x2确定,当自变量取(-∞,0)内的数值时,函数值由y=1-x确定,如 f(-1)=2,f(1)=1,f(0)=12.
    图1-3
    分段函数的分段点有其特殊意义,讨论函数在分段点上的极限、连续性、可导性时务请注意.
    二、反函数
    在研究两个变量间的关系时,常根据实际问题的需要选定其中一个变量为自变量,另一个就是因变量.例如,自由落体运动中,如考虑下落距离S随下落时间t的变化规律,则有S=12gt2. 有时需反过来考虑问题,已知下落距离,求下落时间t,则从S=12gt2解出t,得t=2Sg. 此时,t是S的函数,称前者为直接函数,后者为反函数. 一般地,有如下定义.
    定义2 设函数y=f(x)的定义域为D,值域为M. 如对于任意的y∈M,有**的x∈D,使得f(x)=y,则变量x是变量y的函数,其对应法则记作f-1. 这个定义在M上的函数x=f-1(y),称它为函数y=f(x)的反函数,而y=f(x)称为直接函数.
    函数取决于它的定义域和对应规则,与用什么字母表示自变量与因变量无关,而习惯上,常以x表示自变量,y表示因变量,于是y=f(x)的反函数x=f-1(y)也可写成y=f-1(x).
    不难发现,函数y=f(x)的定义域和值域分别是它反函数y=f-1(x)的值域和定义域.
    可以证明:单调函数存在反函数.
    例3 求函数y=x2,x∈[0,+∞)的反函数.
    解由y=x2,x∈[0,+∞)解得x=y,y≥0.于是y=x2,x∈[0,+∞)的反函数为y=x,x∈[0,+∞).
    应当注意,函数y=x2,x∈(-∞,+∞)不存在反函数.
    一般地,函数y=f(x)与它的反函数y=f-1(x)在同一坐标系内的图像关于直线y=x对称.
    三、复合函数
    在实际问题中,经常遇到两个变量之间的联系不是直接的,即因变量不直接依赖于自变量,而是通过另一个变量联系起来.
    例如,有质量为m的物体,以初速度v0竖直上抛,由物理学知其动能E是速度v的函数
    E=12mv2
    而速度v在不计空气阻力时又为v=v0-gt,g是重力加速度,因此E通过v成为t的函数
    E=12m(v0-gt)2
    它是由函数E=12mv2和v=v0-gt复合而成的复合函数.一般地,有
    定义3 设y是u的函数y=f(u),而u又是x的函数u=φ(x),如果x在φ(x)的定义域或其一部分上取值时,对应的u值使y=f(u)有定义,则y通过u和x建立了函数关系y=f(u)=f(φ(x))称为由函数y=f(u)与u=φ(x)复合而成的复合函数,并把u叫做中间变量,f(u)叫外层函数,φ(x)叫内层函数.
    例4 求下列函数的复合函数:
    (1) y=1-u2与u=logax;
    (2) y=1-u2与u=2x;
    (3) y=arcsinu与u=2+x2;
    (4) f(x)=x1-2x,求f(f(x)).
    解 (1) 因对于任意x>0,u=logax∈(-∞,∞),它对于y=1-u2有意义,所以复合函数为y=1-loga2x,x∈(0,∞).
    (2) 因当x在(-∞,0]上变化时,u=2x∈(0,1],它对于y=1-u2有意义,所以复合函数为y=1-4x,x∈(-∞,0].
    (3) 无论x取什么值,u=2+x2≥2,此时u值对y=arcsinu没有意义(u=2+x2的值域与y=arcsinu的定义域的交集是空集),故y=arcsinu与u=2+x2不能复合成复合函数.
    (4) 因
    f(x)=x1-2x
    所以
    从上面的例子可看出,两个函数的复合是有条件的,当且仅当u=φ(x)的值域与y=f(u)的定义域有非空的交集,如例4(1)、(2)、(4)中y=f(u)的定义域与u=φ(x)的值域的交集非空,可以复合,而(3)中,交集是空集,故不能复合. 一般来讲,y=f(φ(x))的定义域比u=φ(x)的定义域要小.
    上面讲的是两个函数的复合,也可以是三个及三个以上函数的复合,设有y=f(u),u=φ(v),v=ψ(x)三个函数,如满足复合的条件,则可得复合函数y=f(φ(ψ(x))).
    我们不仅要学会把若干个简单的函数“复合”成一个复合函数,还要善于把一个复合函数“分解”为若干个简单函数. 这种分解技术在后面微积分运算中经常用到. “分解”过程与“复合”过程正好相反,它是一个从外到里的分解过程.
    例5 写出下列函数的复合过程:
    (1) y=1-x;
    (2) y=3cos(x2+1);
    (3) y=sin(ex-1);
    (4) y=lntanx22.
    解 (1) y=1-x可看成由y=u,u=1-x复合而成.
    (2) y=3cos(x2+1)可看成由y=3u,u=cosv,v=x2+1复合而成.
    (3) y=sin(ex-1)可看成由y=sinu,u=ev,v=x-1复合而成.
    (4) y=lntanx22可看成由y=
    目录
    目录 第6版编写说明 **章 函数与极限 §1-1 函数(1) 1-1.1 函数的概念(1) 1-1.2 分段函数、反函数、复合函数(3) 1-1.3 初等函数(5) §1-2 函数的极限(7) 1-2.1 数列的极限(7) 1-2.2 函数的极限(9) 1-2.3 无穷小量与无穷大量(12) 1-2.4 函数极限的运算(13) §1-3 极限存在定理与两个重要极限(16) 1-3.1 极限存在定理(16) 1-3.2 两个重要极限(16) §1-4 函数的连续性(18) 1-4.1 函数的增量(18) 1-4.2 函数的连续与间断(19) 1-4.3 初等函数的连续性(21) 习题一(22) 第二章 导数与微分 §2-1 导数的概念(26) 2-1.1 导数的定义(26) 2-1.2 函数连续性与可导性的关系(29) 2-1.3 几个基本初等函数的导数(29) §2-2 求导法则(31) 2-2.1 导数的四则运算法则(31) 2-2.2 反函数的求导法则(33) 2-2.3 复合函数的求导法则(35) 2-2.4 隐函数的求导法则(37) 2-2.5 由参数方程所确定的函数的求导法则(39) 2-2.6 高阶导数(40) §2-3 微分概念(41) 2-3.1 微分的定义及几何意义(41) 2-3.2 微分的求法、微分形式不变性(42) §2-4 微分的应用(43) 2-4.1 近似计算(43) 2-4.2 误差估计(45) 习题二(46) 第三章 导数的应用 §3-1 中值定理(49) §3-2 洛必达法则(52) 3-2.1 两个无穷小量之比的极限(52) 3-2.2 两个无穷大量之比的极限(52) 3-2.3 其他未定型极限的求法(53) §3-3 函数性态的研究(53) 3-3.1 函数的增减性和极值(54) 3-3.2 曲线的凹凸与拐点(57) 3-3.3 曲线的渐近线(59) 3-3.4 函数图形的描绘(61) 习题三(63) 第四章 不定积分 §4-1 不定积分的概念与性质(66) 4-1.1 原函数(66) 4-1.2 不定积分的概念(66) 4-1.3 不定积分的几何意义(67) 4-1.4 不定积分的简单性质(67) §4-2 不定积分的基本公式(68) 4-2.1 基本公式(68) 4-2.2 直接积分法(69) §4-3 两种积分法(70) 4-3.1 换元积分法(70) 4-3.2 分部积分法(77) *§4-4 有理函数与三角函数有理式的积分(81) 4-4.1 有理函数的积分(81) 4-4.2 三角函数有理式的积分(83) 习题四(85) 第五章 定积分及其应用 §5-1 定积分的概念(88) 5-1.1 两个实际问题(88) 5-1.2 定积分的概念(89) §5-2 定积分的简单性质(91) §5-3 定积分的计算(93) 5-3.1 牛顿莱布尼茨公式(93) 5-3.2 定积分的换元积分法和分部积分法(94) §5-4 定积分的应用(96) 5-4.1 平面图形的面积(97) 5-4.2 旋转体的体积(99) *5-4.3 平面曲线的弧长(100) 5-4.4 函数在区间上的平均值(102) 5-4.5 变力所做的功(102) 5-4.6 液体的静压力(104) §5-5 广义积分和Γ函数(105) 5-5.1 广义积分(105) 5-5.2 Γ函数(107) 习题五(108) 第六章 空间解析几何 §6-1 空间直角坐标系(111) 6-1.1 空间直角坐标系的建立(111) 6-1.2 空间两点间的距离(112) §6-2 向量代数(113) 6-2.1 向量及其坐标表示(113) 6-2.2 向量的数量积(117) 6-2.3 向量的向量积(118) §6-3 空间的平面与直线(120) 6-3.1 空间平面及其方程(120) 6-3.2 空间直线及其方程(123) §6-4 空间的曲面与曲线(126) 6-4.1 空间曲面及其方程(126) 6-4.2 二次曲面(126) 6-4.3 空间曲线及其方程(131) 习题六(132) 第七章 多元函数微分学 §7-1 多元函数的基本概念(135) 7-1.1 多元函数的概念(135) 7-1.2 二元函数的极限(137) 7-1.3 二元函数的连续性(138) §7-2 多元函数的偏导数(139) 7-2.1 偏导数的概念与计算(139) 7-2.2 偏导数的几何意义(141) 7-2.3 偏导数与连续的关系(141) 7-2.4 高阶偏导数(141) §7-3 多元函数的全微分及其应用(143) 7-3.1 全增量与全微分的概念(143) 7-3.2 全微分在近似计算上的应用(144) §7-4 多元复合函数与隐函数的微分法(145) 7-4.1 连锁法则(145) 7-4.2 隐函数的微分法(148) 7-4.3 全微分形式不变性(149) §7-5 多元函数的极值及其求法(150) 7-5.1 多元函数的极值(150) 7-5.2 多元函数的*值(152) 7-5.3 多元函数的条件极值(153) 习题七(155) 第八章 多元函数积分学 §8-1 二重积分的概念及简单性质(158) 8-1.1 二重积分的概念(158) 8-1.2 二重积分的简单性质(160) §8-2 二重积分的计算(161) 8-2.1 直角坐标系中二重积分的计算方法(161) 8-2.2 利用极坐标计算二重积分(167) *§8-3 对弧长的曲线积分(171) 8-3.1 对弧长的曲线积分的概念及其简单性质(171) 8-3.2 对弧长的曲线积分的计算(172) §8-4 对坐标的曲线积分(174) 8-4.1 对坐标的曲线积分的概念及简单性质(174) 8-4.2 对坐标的曲线积分的计算(176) §8-5 格林公式及其应用(179) 8-5.1 格林公式(179) 8-5.2 曲线积分与路径无关的条件(182) 习题八(185) 第九章 微分方程 §9-1 基本概念(188) 9-1.1 实例(188) 9-1.2 微分方程及其阶(189) 9-1.3 微分方程的解(189) §9-2 可分离变量的微分方程(190) §9-3 一阶线性微分方程(194) §9-4 可降阶的二阶微分方程(198) 9-4.1 y″=f(x)型的二阶微分方程(199) 9-4.2 y″=f(x,y′)型的二阶微分方程(199) 9-4.3 y″=f(y,y′)型的二阶微分方程(200) §9-5 二阶常系数线性微分方程(201) 9-5.1 二阶线性微分方程的解的结构(201) 9-5.2 二阶常系数线性齐次微分方程的解法(203) 9-5.3 二阶常系数线性非齐次方程的解法(206) *§9-6 拉普拉斯变换(208) 9-6.1 拉普拉斯变换的基本概念(209) 9-6.2 拉氏变换的基本性质(211) 9-6.3 拉氏逆变换(212) 9-6.4 利用拉氏变换解微分方程的初值问题(214) 习题九(217) §10-1 常数项级数的概念及性质(220) 10-1.1 常数项级数的概念(220) 10-1.2 无穷级数的基本性质(221) §10-2 常数项级数的敛散性(224) 10-2.1 正项级数及其审敛法(224) 10-2.2 任意项级数(228) 10-2.3 交错级数及其审敛法(229) §10-3 幂级数(230) 10-3.1 函数项级数的概念(230) 10-3.2 幂级数及其收敛性(231) 10-3.3 幂级数的运算(234) §10-4 函数的幂级数展开及其应用(235) 10-4.1 泰勒公式与泰勒级数(235) 10-4.2 函数的幂级数展开(237) 10-4.3 函数展成幂级数的应用(239) *§10-5 傅里叶级数(243) 10-5.1 三角级数(244) 10-5.2 三角函数系的正交性(244) 10-5.3 函数展开成傅里叶级数(245) 习题十(251) 习题答案(253)

    与描述相符

    100

    北京 天津 河北 山西 内蒙古 辽宁 吉林 黑龙江 上海 江苏 浙江 安徽 福建 江西 山东 河南 湖北 湖南 广东 广西 海南 重庆 四川 贵州 云南 西藏 陕西 甘肃 青海 宁夏 新疆 台湾 香港 澳门 海外