《开放环境下的度量学习研究》由南京大学人工智能学院副研究员叶翰嘉撰写,内容荣获2021年度CCF**博士学位论文奖。全书以模型在开放环境下输入、输出层面上面临的挑战为切入点,提出针对或利用度量学习特性的具体算法,从理论和应用等多个角度使度量学习的研究能够契合开放的环境。 《开放环境下的度量学习研究》共七章: 第1章 绪论,主要介绍了度量学习、开放环境的特点、开放环境的研究进展以及全书的概要。 第2章 度量学习研究进展,首先介绍了监督学习和度量学习;然后讲解了三种度量学习的相关算法,包括全局度量学习方法、多度量学习方法、**度量学习方法;*后介绍了开放环境下度量学习的研究思路。 第3章 开放环境下度量学习的样本复杂度分析,首先展示了现有的度量学习理论结果,然后提出了基于函数性质的度量学习样本复杂度的改进方案,以及基于度量重用的度量学习样本复杂度的改进方案。 第4章 基于度量学习和语义映射的异构模型修正,首先介绍了相关工作;其次介绍了基于度量语义映射的模型重用框架REFORM;然后介绍了实现模型重用框架REFORM的具体方法,包括自适应尺度的REFORM实现方法、学习变换的REFORM实现