本书采用“理论 实践”的形式编写,通过大量的实例(共96个),全面而深入地讲解了深度学习神经网络原理和TensorFlow使用方法两方面的内容。书中的实例具有很强的实用性,如对图片分类、制作一个简单的聊天机器人、进行图像识别等。书中每章都配有一段教学视频,视频和图书的**内容对应,能帮助读者快速地掌握该章的**内容。本书还免费提供了所有实例的源代码及数据样本,这不仅方便了读者学习,而且也能为读者以后的工作提供便利。
本书共12章,分为3篇。第1篇深度学习与TensorFlow基础,包括快速了解人工智能与TensorFlow、搭建开发环境、TensorFlow基本开发步骤、TensorFlow编程基础、识别图中模糊的手写数字等内容;第2篇深度学习基础——神经网络,介绍了神经网络的基础模型,包括单个神经元、多层神经网络、卷积神经网络、循环神经网络、自编码网络等内容;第3篇深度学习进阶,是对基础网络模型的灵活运用与自由组合,是对前面知识的综合及拔高,包括深度神经网络和对抗神经网络两章内容。
本书结构清晰,案例丰富,通俗易懂,实用性强,特别适合TensorFlow深度学习的初学者和进阶读者作为