您好,欢迎光临有路网!
突围算法:机器学习算法应用
QQ咨询:
有路璐璐:

突围算法:机器学习算法应用

  • 作者:刘凡平
  • 出版社:电子工业出版社
  • ISBN:9787121392634
  • 出版日期:2020年08月01日
  • 页数:264
  • 定价:¥79.00
  • 分享领佣金
    手机购买
    城市
    店铺名称
    店主联系方式
    店铺售价
    库存
    店铺得分/总交易量
    发布时间
    操作

    新书比价

    网站名称
    书名
    售价
    优惠
    操作

    图书详情

    内容提要
    本书主要对算法的原理进行了介绍,并融合大量的应用案例,详细介绍使用机器学习模型的一般方法,帮助读者理解算法原理,学会模型设计。本书首先介绍数据理解、数据的处理与特征,帮助读者认识数据;然后从宏观、系统的角度介绍机器学习算法分类、一般学习规则及机器学习的基础应用;接着根据项目研发的流程,详细介绍了模型选择和结构设计、目标函数设计、模型训练过程设计、模型效果的评估与验证、计算性能与模型加速;*后通过多个应用案例帮助读者加强对前面知识点的理解。
    目录
    第1章 引言 1 1.1 人工智能概述 2 1.1.1 人工智能的分类 2 1.1.2 人工智能的应用 3 1.2 人工智能与传统机器学习 5 1.2.1 人工神经网络与生物神经网络 5 1.2.2 落地的关键因素 6 1.3 机器学习算法领域发展综述 8 1.3.1 计算机视觉 9 1.3.2 自然语言处理 10 1.3.3 语音识别 11 1.4 小结 13 参考文献 13 第2章 数据理解 16 2.1 数据的三个基本维度 17 2.1.1 集中趋势 17 2.1.2 离散趋势 19 2.1.3 分布形态 20 2.2 数据的统计推论的基本方法 22 2.2.1 数据抽样 22 2.2.2 参数估计 24 2.2.3 假设检验 26 2.3 数据分析 31 2.3.1 基本理念 31 2.3.2 体系结构 32 2.3.3 传统数据分析方法与示例 33 2.3.4 基于数据挖掘的数据分析方法与示例 35 2.3.5 工作流程 38 2.3.6 数据分析技巧 40 2.3.7 数据可视化 43 2.4 小结 45 参考文献 45 第3章 数据处理与特征 47 3.1 数据的基本处理 48 3.1.1 数据预处理 48 3.1.2 数据清洗中的异常值判定和处理 49 3.1.3 数据清洗中的缺失值填充 51 3.2 数据的特征缩放和特征编码 54 3.2.1 特征缩放 54 3.2.2 特征编码 57 3.3 数据降维 58 3.3.1 基本思想与方法 58 3.3.2 变量选择 59 3.3.3 特征提取 61 3.4 图���的特征分析 68 3.4.1 图像预处理 68 3.4.2 传统图像特征提取 74 3.4.3 指纹识别 77 3.5 小结 78 参考文献 79 第4章 机器学习基础 81 4.1 统计学习 82 4.1.1 统计学习概述 82 4.1.2 一般研发流程 83 4.2 机器学习算法分类 85 4.2.1 体系框架 85 4.2.2 模型的形式 88 4.3 机器学习的学习规则 90 4.3.1 误差修正学习 90 4.3.2 赫布学习规则 91 4.3.3 *小均方规则 92 4.3.4 竞争学习规则 93 4.3.5 其他学习规则 94 4.4 机器学习的基础应用 95 4.4.1 基于*小二乘法的回归分析 95 4.4.2 基于K-Means的聚类分析 98 4.4.3 基于朴素贝叶斯的分类分析 101 4.5 小结 103 参考文献 103 第5章 模型选择和结构设计 105 5.1 传统机器学习模型选择 106 5.1.1 基本原则 106 5.1.2 经典模型 107 5.2 经典回归模型的理解和选择 108 5.2.1 逻辑回归 108 5.2.2 多项式回归 109 5.2.3 各类回归模型的简单对比 112 5.3 经典分类模型的理解和选择 113 5.3.1 K近邻算法 113 5.3.2 支持向量机 114 5.3.3 多层感知器 115 5.3.4 AdaBoost算法 117 5.3.5 各类分类算法的简单对比 118 5.4 经典聚类模型的理解和选择 120 5.4.1 基于划分的聚类 120 5.4.2 基于层次的聚类 122 5.4.3 基于密度的聚类 126 5.4.4 基于网格的聚类 131 5.4.5 聚类算法的简单对比 131 5.5 深度学习模型选择 132 5.5.1 分类问题模型 132 5.5.2 聚类问题模型 138 5.5.3 回归预测模型 139 5.5.4 各类深度学习模型的简单对比 140 5.6 深度学习模型结构的设计方向 141 5.6.1 基于深度的设计 141 5.6.2 基于升维或降维的设计 144 5.6.3 基于宽度和多尺度的设计 145 5.7 模型结构设计中的简单技巧 146 5.7.1 激活函数的选择 146 5.7.2 隐藏神经元的估算 147 5.7.3 卷积核串联使用 148 5.7.4 利用Dropout提升性能 149 5.8 小结 150 参考文献 151 第6章 目标函数设计 154 6.1 损失函数 155 6.1.1 一般简单损失函数 155 6.1.2 图像分类场景经典损失函数 156 6.1.3 目标检测中的经典损失函数 158 6.1.4 图像分割中的经典损失函数 159 6.1.5 对比场景中的经典损失函数 161 6.2 风险*小化和设计原则 165 6.2.1 期望风险、经验风险和结构风险 165 6.2.2 目标函数的设计原则 166 6.3 基于梯度下降法的目标函数优化 167 6.3.1 理论基础 167 6.3.2 常见的梯度下降法 169 6.3.3 改进方法 169 6.4 基于牛顿法的目标求解 173 6.4.1 基本原理 173 6.4.2 牛顿法的计算步骤 174 6.5 小结 175 参考文献 176 第7章 模型训练过程设计 178 7.1 数据选择 179 7.1.1 数据集筛选 179 7.1.2 难例挖掘 180 7.1.3 数据增强 181 7.2 参数初始化 183 7.2.1 避免全零初始化 183 7.2.2 随机初始化 184 7.3 拟合的验证与判断 185 7.3.1 过拟合的模型参数 185 7.3.2 不同算法场景中的欠拟合和过拟合 187 7.4 学习速率的选择 188 7.4.1 学习速率的一般观测方法 188 7.4.2 学习速率与批处理大小的关系 189 7.5 迁移学习 189 7.5.1 概念与基本方法 189 7.5.2 应用示例:基于VGG-16的迁移思路 190 7.6 分布式训练 191 7.6.1 数据并行 191 7.6.2 模型并行 193 7.7 小结 194 参考文献 194 第8章 模型效果的评估与验证 196 8.1 模型效果评估的一般性指标 197 8.1.1 分类算法的效果评估 197 8.1.2 聚类算法的效果评估 201 8.1.3 回归算法的效果评估 205 8.1.4 不同应用场景下的效果评估 206 8.2 交叉验证 208 8.2.1 基本思想 208 8.2.2 不同的交叉验证方法 209 8.3 模型的稳定性分析 210 8.3.1 计算的稳定性 210 8.3.2 数据的稳定性 211 8.3.3 模型性能 212 8.4 小结 213 参考文献 213 第9章 计算性能与模型加速 215 9.1 计算优化 216 9.1.1 问题与挑战 216 9.1.2 设备与推断计算 216 9.2 性能指标 217 9.2.1 计算平台的重要指标:算力和带宽 217 9.2.2 模型的两个重要指标:计算量和访存量 218 9.3 模型压缩与裁剪 219 9.3.1 问题背景 219 9.3.2 基本思路和方法 220 9.4 小结 221 参考文献 221 第10章 应用案例专题 223 10.1 求解二元一次方程 224 10.1.1 问题分析 224 10.1.2 模型设计 225 10.2 鸢尾花的案例分析 226 10.2.1 数据说明 226 10.2.2 数据理解和可视化 227 10.2.3 数据特征的降维 230 10.2.4 数据分类 231 10.2.5 数据聚类 235 10.3 形体识别 237 10.3.1 问题定义 237 10.3.2 应用形式 239 10.3.3 数据准备与处理 241 10.3.4 技术方案与模型设计 243 10.3.5 改进思考 245 10.4 小结 246 参考文献 246

    与描述相符

    100

    北京 天津 河北 山西 内蒙古 辽宁 吉林 黑龙江 上海 江苏 浙江 安徽 福建 江西 山东 河南 湖北 湖南 广东 广西 海南 重庆 四川 贵州 云南 西藏 陕西 甘肃 青海 宁夏 新疆 台湾 香港 澳门 海外