您好,欢迎光临有路网!
国外物理名著系列17(影印版)-纳米薄膜分析基础(国外物理名著系列)(Fundamentals of Nanoscale Film Analysis)
QQ咨询:
有路璐璐:

国外物理名著系列17(影印版)-纳米薄膜分析基础(国外物理名著系列)(Fundamentals of Nanoscale Film Analysis)

  • 作者:(美国)(T.J.Alford)阿尔弗德
  • 出版社:科学出版社
  • ISBN:9787030222596
  • 出版日期:2008年01月01日
  • 页数:336
  • 定价:¥68.00
  • 分享领佣金
    手机购买
    城市
    店铺名称
    店主联系方式
    店铺售价
    库存
    店铺得分/总交易量
    发布时间
    操作

    新书比价

    网站名称
    书名
    售价
    优惠
    操作

    图书详情

    内容提要
    现代科学技术(从材料科学到集成电路)已深入到纳米层次。从薄膜到场效应传感器,研究的**是如何把尺度从微米量级减小到纳米量级。纳米薄膜分析一书主要研究了材料表面及从表面到几十乃至100纳米深的结构与构成。主要讨论了用入射粒子和光子来量化结构并进行成分和深度分析的材料表征方法。
    本书讨论了通过入射光子或粒子刻蚀纳米材料来表征材料的方法,入射的粒子能够激发出可测的粒子或光子,这正是表征材料的依据,纳米尺度材料分析实验会用到大量入射粒子与待测粒子束的相互作用。其中较重要的有原子碰撞、卢瑟福背散射、离子遂道、衍射、光子吸收、辐射与非辐射阳县跃迁以及核反应。本书详细介绍了各种分析和扫描探针显微技术。
    文章节选


    对于国内的物理学工作者和青年学生来讲,研读国外**的物理学著作是系统掌握物理学知识的一个重要手段。但是,在国内并不能及时、方便地买到国外的图书,且国外图书不菲的价格往往令国内的读者却步,因此,把国外的**物理原著引进到国内,让国内的���者能够方便地以较低的价格购买是一项意义深远的工作,将有助于国内物理学工作者和青年学生掌握国际物理学的前沿知识,进而推动我国物理学科研和教学的发展。
    为了满足国内读者对国外**物理学著作的需求,科学出版社启动了引进国外**著作的工作,出版社的这一举措得到了国内物理学界的积极响应和支持,很快成立了专家委员会,开展了选题的**和筛选工作,在出版社初选的书单基础上确定了**批引进的项目,这些图书几乎涉及了近代物理学的所有领域,既有阐述学科基本理论的经典名著,也有反映某一学科专题前沿的专著。在选择图书时,专家委员会遵循了以下原则:基础理论方面的图书强调“经典”,选择了那些经得起时间检验、对物理学的发展产生重要影响、现在还不“过时”的著作(如:狄拉克的《量子力学原理》)。反映物理学某一领域进展的著作强调“前沿”和“热点”,根据国内物理学研究发展的实际情况,选择了能够体现相关学科*新进展,对有关方向的科研人员和研究生有重要参考价值的图书。这些图书都是*新版的,多数图书都是2000年以后出版的,还有相当一部分是2006年出版的新书。因此,这套丛书具有权威性、前瞻性和应用性强的特点。由于国外出版社的要求,科学出版社对部分图书进行了少量的翻译和注释(主要是目录标题和练习题),但这并不会影响图书“原汁原味”的感觉,可能还会方便国内读者的阅读和理解。
    “他山之石,可以攻玉”,希望这套丛书的出版能够为国内物理学工作者和青年学生的工作和学习提供参考,也希望国内更多专家参与到这一工作中来,**更多的好书。
    目录
    Preface
    1. An Overview:Concepts,Units,and the Bohr Atom
    1.1 Introduction
    1.2 Nomenclature
    1.3 Energies,Units,and Particles
    1.4 Particle-Wave Duality and Lattice Spacing
    1.5 The Bohr Model
    Problems
    2. Atomic Collisions and Backscattering Spectrometry
    2.1 Introduction
    2.2 Kinematics of Elastic Collisions
    2.3 Rutherford Backscattering Spectrometry
    2.4 Scattering Cross Section and Impact Parameter
    2.5 Central Force Scattering
    2.6 Scattering Cross Section:Two-Body
    2.7 Deviations from Rutherford Scattering at Low and High Energy
    2.8 Low-Energy Ion Scattering
    2.9 Forward Recoil Spectrometry
    2.10 Center of Mass to Laboratory Transformation
    Problems
    3. Energy Loss of Light Ions and Backscattering Depth Profiles
    3.1 Introduction
    3.2 General Picture of Energy Loss and Units of Energy Loss
    3.3 Energy Loss of MeV Light Ions in Solids
    3.4 Energy Loss in Compounds Bragg's Rule
    3.5 The Energy Width in Backscattering
    3.6 The Shape of the Backscattering Spectrum
    3.7 Depth Profiles with Rutherford Scattering
    3.8 Depth Resolution and Energy-Loss Straggling
    3.9 Hydrogen and Deuterium Depth Profiles
    3.10 Ranges of H and He Ions
    3.11 Sputtering and Limits to Sensitivity
    3.12 Summary of Scattering Relations
    Problems
    4. Sputter Depth Profiles and Secondary Ion Mass Spectroscopy
    4.1 Introduction
    4.2 Sputtering by Ion Bombardment—General Concepts
    4.3 Nuclear Energy Loss
    4.4 Sputtering Yield
    4.5 Secondary Ion Mass Spectroscopy (SIMS)
    4.6 Secondary Neutral Mass Spectroscopy (SNMS)
    4.7 Preferential Sputtering and Depth Profiles
    4.8 Interface Broadening and Ion Mixing
    4.9 Thomas-Fermi Statistical Model of the Atom
    Problems
    5. Ion Channeling
    5.1 Introduction
    5.2 Channeling in Single Crystals
    5.3 Lattice Location of Impurities in Crystals
    5.4 Channeling Flux Distributions 89
    5.5 Surface Interaction via a Two-Atom Model
    5.6 The Surface Peak
    5.7 Substrate Shadowing:Epitaxial Au on Ag(111)
    5.8 Epitaxial Growth
    5.9 Thin Film Analysis
    Problems
    6. Electron-Electron Interactions and the Depth Sensitivity of Electron Spectroscopies
    6.1 Introduction
    6.2 Electron Spectroscopies:Energy Analysis
    6.3 Escape Depth and Detected Volume
    6.4 Inelastic Electron-Electron Collisions
    6.5 Electron Impact Ionization Cross Section
    6.6 Plasmons
    6.7 The Electron Mean Free Path
    6.8 Influence of Thin Film Morphology on Electron Attenuation
    6.9 Range of Electrons in Solids
    6.10 Electron Energy Loss Spectroscopy (EELS)
    6.11 Bremsstrahlung
    Problems
    7. X-ray Diffraction
    7.1 Introduction
    7.2 Bragg's Law in Real Space
    7.3 Coefficient of Thermal Expansion Measurements
    7.4 Texture Measurements in Polycrystalline Thin Films
    7.5 Strain Measurements in Epitaxial Layers
    7.6 Crystalline Structure
    7.7 Allowed Reflections and Relative Intensities
    Problems
    8. Electron Diffraction
    8.1 Introduction
    8.2 Reciprocal Space
    8.3 Laue Equations
    8.4 Bragg's Law
    8.5 Ewald Sphere Synthesis
    8.6 The Electron Microscope
    8.7 Indexing Diffraction Patterns
    Problems
    9. Photon Absorption in Solids and EXAFS
    9.1 Introduction
    9.2 The Schrodinger Equation
    9.3 Wave Functions
    9.4 Quantum Numbers,Electron Configuration,and Notation
    9.5 Transition Probability
    9.6 Photoelectric Effect Square-Well Approximation
    9.7 Photoelectric Transition Probability for a Hydrogenic Atom
    9.8 X-ray Absorption
    9.9 Extended X-ray Absorption Fine Structure (EXAFS)
    9.10 Time-Dependent Perturbation Theory
    Problems
    10. X-ray Photoelectron Spectroscopy
    10.1 Introduction
    10.2 Experimental Considerations
    10.3 Kinetic Energy of Photoelectrons
    10.4 Photoelectron Energy Spectrum
    10.5 Binding Energy and Final-State Effects
    10.6 Binding Energy Shifts—Chemical Shifts
    10.7 Quantitative Analysis
    Problems
    11. Radiative Transitions and the Electron Microprobe
    11.1 Introduction
    11.2 Nomenclature in X-Ray Spectroscopy
    11.3 Dipole Selection Rules
    11.4 Electron Microprobe
    11.5 Transition Rate for Spontaneous Emission
    11.6 Transition Rate for Kα Emission in Ni
    11.7 Electron Microprobe:Quantitative Analysis
    11.8 Particle-Induced X-Ray Emission (PIXE)
    11.9 Evaluation of the Transition Probability for Radiative Transitions
    11.10 Calculation of the Kβ/Kα Ratio
    Problems
    12. Nonradiative Transitions and Auger Electron Spectroscopy
    12.1 Introduction
    12.2 Auger Transitions
    12.3 Yield of Auger Electrons and Fluorescence Yield
    12.4 Atomic Level Width and Lifetimes
    12.5 Auger Electron Spectroscopy
    12.6 Quantitative Analysis
    12.7 Auger Depth Profiles
    Problems
    13. Nuclear Techniques:Activation Analysis and Prompt Radiation Analysis
    13.1 Introduction
    13.2 Q Values and Kinetic Energies
    13.3 Radioactive Decay
    13.4 Radioactive Decay Law
    13.5 Radionuclide Production
    13.6 Activation Analysis
    13.7 Prompt Radiation Analysis
    Problems
    14. Scanning Probe Microscopy
    14.1 Introduction
    14.2 Scanning Tunneling Microscopy
    14.3 Atomic Force Microscopy
    Appendix 1. Km for 4He+ as Projectile and Integer Target Mass
    Appendix 2. Rutherford Scattering Cross Section of the Elements for 1 MeV4Hei
    Appendix 3. 4He+ Stopping Cross Sections
    Appendix 4. Electron Configurations and Ionization Potentials of Atoms
    Appendix 5. Atomic Scattering Factors
    Appendix 6. Electron Binding Energies
    Appendix 7. X-Ray Wavelengths (nm)
    Appendix 8. Mass Absorption Coefficient and Densities
    Appendix 9. KLL Auger Energies (eV)
    Appendix 10. Table of the Elements
    Appendix 11. Table of Fluoresence Yields for K,L,and M Shells
    Appendix 12. Physical Constants,Conversions,and Useful Combinations
    Appendix 13. Acronyms
    Index
    ……

    与描述相符

    100

    北京 天津 河北 山西 内蒙古 辽宁 吉林 黑龙江 上海 江苏 浙江 安徽 福建 江西 山东 河南 湖北 湖南 广东 广西 海南 重庆 四川 贵州 云南 西藏 陕西 甘肃 青海 宁夏 新疆 台湾 香港 澳门 海外