您好,欢迎光临有路网!
机器人精度补偿技术与应用(英文版)
QQ咨询:
有路璐璐:

机器人精度补偿技术与应用(英文版)

  • 作者:廖文和,李波,田威,李鹏程
  • 出版社:科学出版社
  • ISBN:9787030740182
  • 出版日期:2023年01月01日
  • 页数:231
  • 定价:¥169.00
  • 分享领佣金
    手机购买
    城市
    店铺名称
    店主联系方式
    店铺售价
    库存
    店铺得分/总交易量
    发布时间
    操作

    新书比价

    网站名称
    书名
    售价
    优惠
    操作

    图书详情

    内容提要
    《工业机器人精度补偿技术与应用(英文版)》详细地介绍了工业机器人精度补偿的基础理论和关键技术,主要内容包括:机器人运动学模型建立方法和机器人定位误差分析,机器人运动学模型标定方法,机器人非运动学标定方法,机器人*优采样点规划方法等,并进一步阐述了飞机装配自动制孔系统中工业机器人精度补偿技术的应用方法,以验证该技术的有效性。
    目录
    Contents Part I Theories Chapter 1 Introduction 3 1.1 Background 3 1.2 What is robot accuracy 6 1.3 Why error compensation 8 1.4 Early investigations and insights 9 1.4.1 Offline calibration 10 1.4.2 Online feedback 16 1.5 Summary 19 Chapter 2 Kinematic modeling 21 2.1 Introduction 21 2.2 Pose description and transformation 21 2.2.1 Descriptions of position and posture 21 2.2.2 Translation and rotation 22 2.3 RPY angle and Euler angle 23 2.4 Forward kinematics 26 2.4.1 Link description and link frame 26 2.4.2 Link transformation and forward kinematic model 27 2.4.3 Forward kinematic model of a typical KUKA industrial robot 29 2.5 Inverse kinematics 33 2.5.1 Uniquely closed solution with joint constraints 34 2.5.2 Inverse kinematic model of a typical KUKA industrial robot 35 2.6 Error modeling 38 2.6.1 Differential transformation 38 2.6.2 Differential transformation of consecutive links 40 2.6.3 Kinematic error model 42 2.7 Summary 44 Chapter 3 Positioning error compensation using kinematic calibration 45 3.1 Introduction 45 3.2 Observability-index-based random sampling method 46 3.2.1 Observability index of robot kinematic parameters 46 3.2.2 Selection method of sampling points 48 3.3 Uniform-grid-based sampling method 54 3.3.1 Optimal grid size 54 3.3.2 Sampling point planning method 67 3.4 Kinematic calibration considering robot flexibility error 73 3.4.1 Robot flexibility analysis 74 3.4.2 Establishment of robot flexibility error model 76 3.4.3 Robot kinematic error model with flexibility error 77 3.5 Kinematic calibration using variable parametric error 79 3.6 Parameter identification using L-M algorithm 81 3.7 Verification of error compensation performance 83 3.7.1 Kinematic calibration with robot flexibility error 83 3.7.2 Error compensation using variable parametric error 84 3.8 Summary 91 Chapter 4 Error-similarity-based positioning error compensation 92 4.1 Introduction 92 4.2 Similarity of robot positioning error 93 4.2.1 Qualitative analysis of error similarity 93 4.2.2 Quantitative analysis of error similarity 94 4.2.3 Numerical simulation and discussion 96 4.3 Error compensation based on inverse distance weighting and error similarity 100 4.3.1 Inverse distance weighting interpolation method 101 4.3.2 Error compensation method combined IDW with error similarity 102 4.3.3 Numerical simulation and discussion 104 4.4 Error compensation based on linear unbiased optimal estimation and error similarity 106 4.4.1 Robot positioning error mapping based on error similarity 106 4.4.2 Linear unbiased optimal estimation of robot positioning error 109 4.4.3 Numerical simulation and discussion 112 4.4.4 Error compensation 116 4.5 Optimal sampling based on error similarity 116 4.5.1 Mathematical model of optimal sampling points 117 4.5.2 Multi-objective optimization and non-inferior solution 119 4.5.3 Genetic algorithm and NSGA-II 121 4.5.4 Multi-objective optimization of optimal sampling points of robots based on NSGA-II 128 4.6 Experimental verification 131 4.6.1 Experimental platform 131 4.6.2 Experimental verification of positioning error similarity 133 4.6.3 Experimental verification of error compensation based on inverse distance weighting and error similarity 141 4.6.4 Experimental verification of error compensation based on linear unbiased optimal estimation and error similarity 145 4.7 Summary 148 Chapter 5 Joint space closed-loop feedback 149 5.1 Introduction 149 5.2 Positioning error estimation 149 5.2.1 Error estimation model of Chebyshev polynomial 149 5.2.2 Identification of Chebyshev coefficients 153 5.2.3 Mapping model 154 5.3 Effect of joint backlash on positioning error 155 5.3.1 Variation law of joint backlash 155 5.3.2 Multi-directional positioning accuracy variation 158 5.4 Error compensation using feedforward and feedback loops 161 5.5 Experimental verification and analysis 162 5.5.1 Experimental setup 162 5.5.2 Error estimation experiment 163 5.5.3 Error compensation experiment 165 5.6 Summary 167 Chapter 6 Cartesian space closed-loop feedback 168 6.1 Introduction 168 6.2 Pose measurement using binocular visual sensor 168 6.2.1 Description of frame 168 6.2.2 Pose measurement principle based on binocular vision 170 6.2.3 Influence of the frame FE on measurement accuracy 174 6.2.4 Pose estimation using Kalman filtering 177 6.3 Vision-guided control system 178 6.4 Experimental verification 183 6.4.1 Experimental platform 183 6.4.2 Kalman-filtering-based estimation 184 6.4.3 No-load experiment 185 6.5 Summary 189 Part II Applications Chapter 7 Applications in robotic drilling 193 7.1 Introducti

    与描述相符

    100

    北京 天津 河北 山西 内蒙古 辽宁 吉林 黑龙江 上海 江苏 浙江 安徽 福建 江西 山东 河南 湖北 湖南 广东 广西 海南 重庆 四川 贵州 云南 西藏 陕西 甘肃 青海 宁夏 新疆 台湾 香港 澳门 海外